
CIS 120 Midterm I September 27, 2019

SOLUTIONS

1

1. Types (16 points)
For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type that OCaml
would infer for the value–i.e., if int list and bool list are both possible types of an
expression, you should write ’a list.

Some of these expressions refer to the variable z (which is defined in the example at the top),
to the functions transform and fold (whose definitions can be found on page 13), or to the
constructors of the type ’a tree, which is defined as:

type ’a tree =
| Leaf of ’a list * int
| Node of ’a tree * int * ’a tree

We have done the first one (z) for you. (2 points each)
let z : _____________int tree ____________ =

Leaf([1], 26)

let a : int list list =
[1;2]::[3;4]::[]

let b : (’a list * ’b list) =
([], [])

let c : ill-typed =
begin match z with (∗ z i s d e f i n e d above ∗)
| [] -> 0
| x::xs -> 1
end

let d : int -> int tree =
fun (x:int) -> Leaf([x], x)

let e : int list =
transform (fun x -> x + 1) [1;2;3]

let f : int list -> (int -> int) list =
transform (fun x y -> x + y)

let g : bool list -> int =
fold (fun x acc -> if x then acc else acc + 1) 0

let h : ill-typed =
Node (z, 4, Leaf([true], 3))

PennKey: 2

2. List Processing and Higher-Order Functions (24 points total)
Recall the higher-order list processing functions shown in Appendix A.

For these problems do not use any list library functions other than @ (list append). Construc-
tors, such as :: and [], are fine.

(a) (6 points) Use transform or fold, along with suitable anonymous function(s), to
implement a function flatten that takes in a ’a list list and returns a ’a list. It
should remove one “nesting” level for the lists. For example, the call
flatten [[1; 2]; [3; 4]] evaluates to the list [1; 2; 3; 4] and the call
flatten [[[1]; [2]]; [[]]] evaluates to the list [[1]; [2]; []].

let flatten (l : ’a list list) : ’a list =
fold (fun (x: ’a list) (acc: ’a list) -> x @ acc) [] l

(b) (6 points) Consider the following recursive function:
let rec f (x: ’a) (g: ’a -> ’a -> int) (l: ’a list) : int =

begin match l with
| [] -> 0
| h :: t -> g h x + f x g t
end

Rewrite the above function using transform or fold.
let f (x: ’a) (g: ’a -> ’a -> int) (l: ’a list) : int =

fold (fun h acc -> g h x + acc) 0 l

PennKey: 3

(c) (12 points) Consider a function that squares all the integers in a given list. If the input
to that function is the list x shown below, the result should be the list y.

let x : int list = [1; 2; 3; 4]

let y : int list = [1; 4; 9; 16]

Which of the following functions will typecheck and produce the correct answer?
(Mark all that apply.)

� let rec squares (l : int list) : int list =
begin match l with
| [] -> []
| hd::tl -> (hd * hd) :: (squares tl)
end

� let rec squares (l : int list) : int list =
transform (fun (x : int) -> x * x) l

� let rec squares (l : int list) : int list =
transform (fun (x : int) -> [x * x]) l

� let rec squares (l : int list) : int list =
fold (fun (x : int) (acc : int list) -> x * x) [] l

� let rec squares (l : int list) : int list =
fold (fun (x : int) (acc : int list) -> [x * x]) [] l

� let rec squares (l : int list) : int list =
fold (fun (x : int) (acc : int list) -> x * x :: acc) [] l

PennKey: 4

3. Modules and Abstract Types (40 points total)

Step 1: Understand the Problem The standard list operations like length, append, and
nth take time proportional to the size of the (first) list argument. As a reminder, nth lst n

finds the nth element of the list lst by counting from the head (starting at 0) towards the tail
one element at a time. For instance, nth [0;1;2;3] 0 evaluates to 0 and nth [0;1;2;3] 2

evaluates to 2. If nth is given an index greater than (or equal to) the length of the list, it fails.

For your reference, Appendix B gives the usual implementations of these operations, found
in the List module. Sometimes these are too slow for the task at hand. In this problem we
consider how to combine trees and lists to more efficiently implement them.

Step 2: Design the Interface The signature below defines an abstract type ’a rope and
operations on it. A rope, like a list, stores a sequence of data elements.

module type ROPE = sig
type ’a rope
val from_list : ’a list -> ’a rope
val to_list : ’a rope -> ’a list
val append : ’a rope -> ’a rope -> ’a rope
val length : ’a rope -> int
val nth : ’a rope -> int -> ’a

end

The properties of the ROPE interface are the same as those for the corresponding list operations—
in that regard, a rope is “just” a different implementation of the list abstract type. This means
that a functionally correct implementation of this interface is:

module ListRope : ROPE = struct
type ’a rope = ’a list

let from_list (l : ’a list) : ’a rope = l
let to_list (r : ’a rope) : ’a list = r
let length (r : ’a rope) : int = List.length r
let append (lr : ’a rope) (rr : ’a rope) : ’a rope = List.append lr rr
let nth (r : ’a rope) (n : int) : ’a = List.nth r n

end

(a) (5 points) Which of the following properties hold of ListRope? Assume we have done
;; open ListRope to import the definitions above, that r, r1, and r2 refer to arbitrary
values of type ’a rope, and lst is a ’a list. (Mark all that apply.)

� length r = List.length (to_list r)

� If to_list r = lst then nth r n = List.nth lst n

� length (append r1 r2) = (length r1) + (length r2)

� If (n < length r1) then nth (append r1 r2) n = nth r1 n

� If (n >= length r1) then nth (append r1 r2) n = nth r2 n

PennKey: 5

Step 3: Define Test Cases (8 points) Our more efficient rope implementation, called
TreeRope, should satisfy the same properties as ListRope. Complete each of the test cases
below by filling in the blanks with identifiers r0, r1, r2, r3, or r4 so that each test succeeds.

;; open TreeRope

let r0 = from_list [0;1;2]
let r1 = from_list [3;4]
let r2 = from_list [5;6;7;8]
let r3 = append r0 (append r1 r2)
let r4 = append (append r1 r1) r1

(a) let test () =
to_list r3 = [0;1;2;3;4;5;6;7;8]

;; run_test "test1" test

(b) let test () =
nth r2 2 = 7

;; run_test "test2" test

(c) let test () =
nth r1 2 = 0

;; run_failing_test "test3" test

(d) let test () =
nth (append r0 r1) 4 = nth r1 (4 - length r0)

;; run_test "test4" test

PennKey: 6

Step 4: Implement the Code To implement these list operations more efficiently, we
choose a different representation based on binary trees, encapsulated in a module named
TreeRope. The module declaration and tree type are shown below.

module TreeRope : ROPE = struct

type ’a tree =
| Leaf of ’a list * int
| Node of ’a tree * int * ’a tree

type ’a rope = ’a tree

We first make the append operation faster. If we already have a list, we can treat it as a rope
by storing it directly in Leaf. If we want to append two ropes, we simply join them with
a Node constructor, which, unlike List.append doesn’t require traversing either list. The
main idea is that each leaf of the tree contains only part of the complete sequence of data
stored in the rope—to convert a tree into the corresponding list, we append all the lists at
the leaves using in order traversal. This code is shown below:

let rec to_list (r : ’a tree) : ’a list =
begin match r with
| Leaf (l,_) -> l
| Node (lt, _, rt) ->

List.append (to_list lt) (to_list rt)
end

To accelerate the length and nth operations, we store extra information in the tree. Each
leaf, in addition to the (partial) list data, also stores the length of that piece; the length is
computed just once when the leaf is created, so repeatedly asking for length information
about the leaf data doesn’t require repeated traversals of the list at the leaf. Moreover, the
total length of the lists in its left child are stored at the node. Finally, there is no point in
storing lots of leaves that contain the empty list, so we require that every left subtree have
size strictly greater than 0 (which means its leaves can’t contain just empty lists). Stated as
invariants, we have:

Rope Invariants
A value r : ’a rope satisfies the rope invariants if:

• r is Leaf(lst, n) and List.length lst = n, or

• r is Node(lt, n, rt) and

– n > 0 and n is the total length of all the lists stored at the leaves in lt

– lt and rt both recursively satisfy the rope invariants

(Nothing to do on this page.)

PennKey: 7

(a) (3 points) Given the invariants above, which of the following is a correct implementa-
tion for the length operation on ropes?

�

let rec length (t : ’a tree) : int =
begin match t with

| Leaf (l,_) -> 0
| Node (_, _, rt) -> 1 + length rt

end

�

let rec length (t : ’a tree) : int =
begin match t with

| Leaf (l,x) -> x
| Node (lt, x, _) -> x + length lt

end

�

let rec length (t : ’a tree) : int =
begin match t with

| Leaf (l,x) -> x
| Node (_, x, rt) -> x + length rt

end

(b) (2 points) Given the invariants above, there is a unique value r : int rope

such that to_list r = [].

� True � False

(c) (2 points) Given the invariants above, there is a unique value r : int rope

such that to_list r = [2].

� True � False

(d) (2 points) Given the invariants above, there is a unique value r : int rope

such that to_list r = [2;3;4].

� True � False

PennKey: 8

Complete the code for each of the following operations that build rope trees. In each case,
ensure that the resulting tree satisfies the rope invariants. You may use List.length to refer
to the list version of length and just length to refer to the rope version defined above. Do
not use List.append (or @) in this implementation. Note that neither operation below is
recursive!

(e) (4 points)
let from_list (l : ’a list) : ’a tree =

Leaf (l, List.length l)

(f) (6 points)
let append (lt : ’a tree) (rt : ’a tree) : ’a tree =

let x = length lt in
if x = 0 then rt else

Node (lt, x, rt)

Complete the code for the rope version of the nth operation. Your implementation should
exploit the rope invariants as much as possible. You may use List.nth to refer the list
version of nth. Note that this function is recursive!

(g) (8 points)
let rec nth (t : ’a tree) (n : int) : ’a =

begin match t with
| Leaf (l,_) -> List.nth l n
| Node (lt, x, rt) ->

if n < x then nth lt n else nth rt (n - x)
end

PennKey: 9

4. Binary Search Trees (20 points total)
This problem concerns buggy implementations of the lookup and insert functions for bi-
nary search trees, the correct versions of which are shown in Appendix C. Note that this
problem refers to the ’a tree type defined there.

First: At most one of the lines of code contains a compile-time (i.e., typechecking) error. If
there is a compile-time error, explain what the error is and one way to fix it. If there is no
compile-time error, say “No Error”.

Second: even after the compile-time error (if any) is fixed, the code is still buggy—for some
inputs the function works correctly and produces the correct answer, and for other inputs,
the function produces an incorrect answer.

let t : int tree = 7
/ \
4 9
/ / \
1 5 10

where, as usual, Empty constructors are not shown, to avoid clutter.

(a) (2 points) Tree t satisfies the BST invariants: � True � False
(b) (9 points)

1 let rec bad_lookup (t: int tree) (n: int) : bool =
2 begin match t with
3 | Empty -> t
4 | Node(lt, x, rt) ->
5 if n = x then true
6 else if n > x then bad_lookup lt n
7 else bad_lookup rt n
8 end

Compile Error on line _3_ : _The expression has type tree instead of bool_

Fix For Compile Error: ______replace with false_______________

Complete each of the test cases with an int value for x so that the test passes, demon-
strating that this implementation sometimes produces the correct answers and some-
times does not. Both of the test cases must use the tree t shown pictorially above.
ANSWER: This lookup function will search the wrong part of the tree . It will work
correctly only for root nodes and for nodes that are not in the tree.

;; run_test "bad_lookup_works_correctly" (fun () ->
let x = _____7______ in
bad_lookup t x = lookup t x)

;; run_test "bad_lookup_computes_wrong_answer" (fun () ->
let x = _____1______ in
not (bad_lookup t x = lookup t x))

PennKey: 10

(c) (9 points)
1 let rec bad_insert (t: ’a tree) (n: ’a) : ’a tree =
2 begin match t with
3 | Empty -> Empty
4 | Node(lt, x, rt) ->
5 if x = n then t
6 else if n < x then Node (bad_insert lt n, x, rt)
7 else Node(lt, x, bad_insert rt n)
8 end

Compile Error on line ______ : ___No Error_______

For the test cases below, draw pictures of Binary Search Trees t1 and t2

where bad_insert works correctly and incorrectly respectively, demonstrating that
this implementation sometimes produces the correct answers and sometimes does not.

Works Correctly:
n : int = 7
t1 : int tree = 7

Works Incorrectly
n : int = 5
t2 : int tree = 7

/ \
4 9

;; run_test "bad_insert_works_correctly" (fun () ->

bad_insert t1 n = insert t1 n)

;; run_test "bad_insert_works_incorrectly" (fun () ->

not (bad_insert t2 n = insert t2 n))

ANSWER: This insert function never actually inserts an element into the tree. So it
will work correctly only if the element is already present in the tree.

PennKey: 11

Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
on the page for the problem in question.

PennKey: 12

Appendix A: Higher-Order List Processing Functions
Here are the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with

| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

Appendix B: List Operations

(∗ R e l e v a n t p a r t o f t h e l i s t l i b r a r y ∗)
module List = struct

(∗ . . . o t h e r o p e r a t i o n s e l i d e d . . . ∗)

let rec length (l : ’a list) : int =
begin match l with
| [] -> 0
| _::xs -> 1 + length xs

end

let rec append (l1 : ’a list) (l2 : ’a list) : ’a list =
begin match l1 with

| [] -> l2
| x::xs -> x::(append xs l2)

end

let rec nth (l : ’a list) (n:int) : ’a =
begin match l with
| [] -> failwith "not found"
| x::xs -> if n = 0 then x else nth xs (n-1)

end
end

PennKey: 13

Appendix C: (Binary Search) Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(∗ c h e c k s i f n i s i n t h e BST t ∗)
let rec lookup (t:’a tree) (n:’a) : bool =

begin match t with
| Empty -> false
| Node(lt, x, rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

(∗ r e t u r n s t h e maximum i n t e g e r i n a ∗NONEMPTY∗ BST t ∗)
let rec tree_max (t: ’a tree) : ’a =

begin match t with
| Empty -> failwith "tree_max called on empty tree"
| Node(_, x, Empty) -> x
| Node(_, _, rt) -> tree_max rt
end

(∗ I n s e r t s n i n t o t h e BST t ∗)
let rec insert (t: ’a tree) (n: ’a) : ’a tree =

begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(∗ r e t u r n s a BST t h a t has t h e same s e t o f nodes as t e x c e p t w i t h n
removed (i f i t ’ s t h e r e) ∗)

let rec delete (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->

if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Empty, _) -> rt
| (_, Empty) -> lt
| (_,_) -> let y = tree_max lt in Node (delete lt y, y, rt)
end

else if n < x then Node(delete lt n, x, rt)
else Node(lt, x, delete rt n)

end

PennKey: 14

