
CIS 120 Midterm II March 31, 2017

SOLUTIONS

1

1. OCaml and Java (14 points) Check one box for each part.

a. The following OCaml function will terminate by exhausting stack space if called as
loop 10:

let rec loop m =
if m = 0 then 1 else loop (m+1)

� True � False

b. The following OCaml function is tail-recursive:
let rec g x1 x2 =
begin match x1 with
| [] -> x2
| hd::tl ->

if hd > 10 then g tl (hd::x2)
else hd :: (g tl x2)

end

� True � False

c. In OCaml, if s and t are variables of type string such that s == t returns false,
then s = t is guaranteed to return false.

� True � False

d. In the OCaml GUI library, a change_listener is a first-class function stored in the
hidden state of a value_controller widget. Every few milliseconds, the value
controller invokes all of the stored change_listeners.

� True � False

e. In the Java ASM, a static method dispatch C.m() implicitly pushes a this reference
onto the stack.

� True � False

f. Casting a variable to class A changes both its static and dynamic types to A.
� True � False

g. The Java compiler can sometimes tell at compile time whether a cast will succeed.
� True � False

PennKey: 2

2. Queues and the ASM
Page 1 in the appendix shows several possible states of the OCaml ASM where a variable
q on the stack points to an int queue record in the heap. (For reference, page 2 in the
appendix repeats the definitions of the basic types and operations for linked mutable queues.)

a. (12 points) In which of these ASM states does q satisfy the queue invariant?

� A satisfies queue invariant
� A does not satisfy queue invariant

� B satisfies queue invariant
� B does not satisfy queue invariant

� C satisfies queue invariant
� C does not satisfy queue invariant

� D satisfies queue invariant
� D does not satisfy queue invariant

� E satisfies queue invariant
� E does not satisfy queue invariant

� F satisfies queue invariant
� F does not satisfy queue invariant

PennKey: 3

b. (16 points) For each of the following code snippets, indicate which (if any) of the
above ASM shapes it produces. (Note that some of the snippets bind variables besides
q; we are omitting all of these variables from the stacks in the ASM diagrams above
and focusing just on q and the state of the heap.)

i. let q = create ()
;; enq 2 q
;; enq 1 q
let _ = deq q

� A � B � C � D � E � F

ii. let q = {head = None; tail = Some {v = 2; next = None}}
;; q.head <- Some {v = 1; next = q.tail}

� A � B � C � D � E � F

iii. let q = create ()
let qn1 = {v = 1; next = None}
let qn2 = {v = 2; next = Some qn1}
;; q.tail <- Some qn2
;; q.head <- Some qn1

� A � B � C � D � E � F

iv. let q = create ()
let qn1 = {v = 1; next = None}
let qn2 = {v = 2; next = Some qn1}
;; q.head <- Some qn1
;; q.tail <- qn2.next

� A � B � C � D � E � F

PennKey: 4

3. Translating Java objects to OCaml
The two Java classes on page 5 of the appendix implement simple “tickets,” each with a
color and a number, and “ticket machines” that print tickets. The get method of a given
TicketMachine object produces tickets of a single color, which is chosen when the
TicketMachine is created. The numbers of the tickets produced by a TicketMachine
always start at 0 and increase each time its get method is called.

a. (4 points) Fill in the blanks so that the test passes:
Answer:

public class TicketMachineTest {

@Test
public void test() {
TicketMachine m1 = new TicketMachine();
TicketMachine m2 = new TicketMachine();
TicketMachine m3 = new TicketMachine();

Ticket t1 = m1.get();
Ticket t2 = m1.get();
Ticket t3 = m2.get();
Ticket t4 = m3.get();

assertEquals(t1.getColor(), "red");
assertEquals(t1.getNumber(), 1);
assertEquals(t2.getColor(), "red");
assertEquals(t2.getNumber(), 2);
assertEquals(t3.getColor(), "blue");
assertEquals(t3.getNumber(), 1);
assertEquals(t4.getColor(), "red");
assertEquals(t4.getNumber(), 1);

}
}

PennKey: 5

b. (22 points)
Fill in the blanks in the following OCaml translation of the ticketMachine class.
(We’ve done the ticket class for you.)
Answer:

type ticket = {getColor: unit->string; getNumber: unit->int}

let mk_Ticket (c:string) (n:int) : ticket =
{ getColor = (fun () -> c);
getNumber = (fun () -> n) }

type ticketMachine = {get: unit->ticket}

let nextColor = { contents = "red" }

let bumpColor c = if c = "red" then "blue" else "red"

let mk_TicketMachine () : ticketMachine =
let myColor = !nextColor in
nextColor := bumpColor (!nextColor);
let nextNumber = { contents = 0 } in
{ get = (fun () ->

nextNumber := !nextNumber + 1;
mk_Ticket myColor !nextNumber)

}

PennKey: 6

4. Java: Subtyping and Inheritance
This question concerns the Java code for the “shapes” hierarchy of interfaces and classes that
we saw in lecture. This code can be found on page 3 in the appendices, for your reference.

Consider the following Java (type-correct) code that adds two new classes:
1 public class Square extends Rectangle {
2 public Square(double x, double y, double size) { super(x,y,size,size); }
3 }
4

5 public class Midterm2 {
6 public static void main(String args[]) {
7 Circle c = new Circle(0, 0, 10);
8 Displaceable d = c;
9 Point p = new Point(10, 0);

10 Shape s = c.getBoundingBox();
11 d.move(c.getRadius(), p.getY());
12 if (d.getX() > 5.0) {
13 s = new Square(0,0,25);
14 } else {
15 s = c;
16 }
17 s.move(5, 0);
18

19 }
20 }

Choose one or more answers for each of the following:

a. (2 points) What is the static type of the variable s on line 17?
� Circle � Displaceable � Point
� Rectangle � Shape � Square

b. (2 points) What is the dynamic class of the variable s on line 17?
� Circle � Displaceable � Point
� Rectangle � Shape � Square

c. (2 points) Does the program typecheck if we insert the following code at line 18?
Area a = new Displaceable();

� Yes, this change is OK.
� No: There is a type error on line 18 because Area is not a subtype of Displaceable.
� No: There is a type error on line 18 because Displaceable is not a subtype of Area.
� No: There is an error on line 18 because Displaceable is an interface not a class.
Note: this question has two correct answers. Two points were given for choosing both,
one point for just one.

PennKey: 7

d. (2 points) Does the program typecheck if we change line 9 to instead read:
Shape p = new Point(10, 0);

� Yes, this change is OK.
� No: There is a type error on line 9 because Point is not a subtype of Shape.
� No: There is a type error on line 9 because Shape is not a subtype of Point.
� No: There is a type error on line 11 when we try to use p.getY().

e. (2 points) Does the program typecheck if we change line 8 to instead read:
Shape d = c;

� Yes, this change is OK.
� No: There is a type error on line 8 because Displaceable is not a subtype of Shape.
� No: There is a type error on line 8 because Circle is not a subtype of Shape.
� No: There is a type error on line 11 when we try to use d.move(...).

PennKey: 8

5. Java Array Programming John Conway’s Game of Life is a famous example of a cellular
automaton—a “zero-player” game, where the evolution of the board is completely deter-
mined by its initial state. A “player” of the game simply creates an initial board configura-
tion, from which the board evolves, step by step, following a simple set of rules.

The game board consists of a rectangular 2d array of integers. At any given moment, each
cell on the board is said to be either alive if its contents are 1 or dead if its contents are 0.

On each step of the game, the new contents of each cell are calculated using its old contents
together with the contents of its 8 nearest neighbors (not including the cell itself). Cells on
the edge of the board will have fewer than 8 neighbors, but the rules for them are otherwise
the same as for other cells.

• If the cell is currently alive, then

– if less than two of its neighbors are currently alive, then on the next state the cell
will be dead (of loneliness);

– if more than three of its neighbors are currently alive, then on the next state the
cell will be dead (of suffocation);

– if either two or three of its neighbors are currently alive, then on the next state the
cell will be alive.

• If the cell is currently dead, then

– if exactly three of its neighbors are currently alive, then on the next step the cell
will be alive (newly born).

The following method encodes this logic:
private static int liveOrDie (int currCell, int countOfNeighbors) {
if (currCell == 0) {
if (countOfNeighbors == 3) return 1;
else return 0;

} else {
if (countOfNeighbors < 2 || countOfNeighbors > 3) return 0;
else if (countOfNeighbors == 3) return 1;
else return currCell;

}
}

Your task in this problem will be to complete the definition of a static Java method step,
which calculates the next state of a Life board from a current state.

PennKey: 9

a. (4 points) Here are two test cases that demonstrate the intended behavior of step. (For
JUnit experts: the assertArrayEquals2 method is something we built ourselves
using JUnit’s 1-d assertArrayEquals method; its behavior is what you’d expect.)
@Test @Test
public void step1() { public void step2() {
int[][] current = { int[][] current = {

{0, 0, 0, 0, 0}, {1, 1, 1, 1, 1},
{0, 0, 0, 0, 0}, {0, 0, 1, 0, 0},
{0, 1, 1, 1, 0}, {0, 0, 1, 0, 0},
{0, 0, 0, 0, 0}, {0, 1, 1, 1, 0},
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},

}; };
int[][] next = { int[][] next = {

{0, 0, 0, 0, 0}, {0, 1, 1, 1, 0},
{0, 0, 1, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 1, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 1, 0, 0}, {0, 1, 1, 1, 0},
{0, 0, 0, 0, 0}, {0, 0, 1, 0, 0},

}; };
assertArrayEquals2 assertArrayEquals2
(next, step(current)); (next, step(current));

} }

Fill in the expected result in the test case below so that the test passes.
Answer:

@Test
public void step2() {
int[][] current = {

{0, 1, 0},
{1, 1, 0},
{0, 0, 1},

};
int[][] next = {

{1, 1, 0},
{1, 1, 1},
{0, 1, 0},

};
assertArrayEquals2
(next, step(current));

}

PennKey: 10

b. (18 points) Complete the definition of step below. (You may find the static library
methods Math.min and Math.max useful, but don’t worry if you don’t end up using
them: there are a number of different ways to write a correct solution.) Your solution
should call liveOrDie at some point.

Answer:

public static int[][] step(int[][] current) {
int width = current.length;
int height = current[0].length;
int[][] next = new int[width][height];
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
int count = 0;
for (int x = Math.max(i - 1, 0); x <= Math.min(i + 1, width-1); x++) {
for (int y = Math.max(j - 1, 0); y <= Math.min(j + 1, height-1); y++) {
if (i != x || j != y) {
count += current[x][y];

}
}

}
next[i][j] = liveOrDie(current[i][j], count);

}
}
return next;

}

PennKey: 11

CIS 120 Midterm II Appendices

Do not write answers in this portion of the exam.

Do not open until the exam begins.

0

A Appendix: Some ASM Heap States

A
head

tail

v 1

next

v 2

next

q

B head

tail

v 1

next

v 2

next

q

C
head

tail

v 1

next

v 2

next

q

D
head

tail

v 1

next

v 2

next

q

E head

tail

v 1

next

v 2

next

q

F
head

tail

v 1

next

v 2

next

q

v 2

next

1

B Appendix: OCaml Linked Queue implementation

type ’a qnode = { v : ’a; mutable next : ’a qnode option; }

type ’a queue = {
mutable head : ’a qnode option;
mutable tail : ’a qnode option;

}

let create () : ’a queue =
{ head = None; tail = None }

let is_empty (q:’a queue) : bool =
q.head = None

let enq (x:’a) (q:’a queue) : unit =
let newnode_opt = Some { v = x; next = None} in
begin match q.tail with
| None -> q.head <- newnode_opt;
q.tail <- newnode_opt

| Some qn2 ->
qn2.next <- newnode_opt;
q.tail <- newnode_opt

end

let deq (q:’a queue) : ’a =
begin match q.head with
| None -> failwith "error: empty queue"
| Some qn ->

q.head <- qn.next;
(if qn.next = None then q.tail <- None);
qn.v
end

let to_list (q : ’a queue) : ’a list =
let rec loop (qn : ’a qnode option) (acc : ’a list) : ’a list =
begin match qn with
| None -> List.rev acc
| Some qn1 -> loop qn1.next (qn1.v :: acc)

end in
loop q.head []

let from_list (xs : ’a list) =
let q = create () in
List.iter (fun x -> enq x q) xs;
q

2

C Appendix: Java “Shapes” Interfaces and Classes

public interface Displaceable {
double getX();
double getY();
void move(double dx, double dy);

}

public interface Area {
double getArea();

}

public interface Shape extends Area, Displaceable {
Rectangle getBoundingBox();

}

public class Point implements Displaceable {

private double x;
private double y;

public Point(double x, double y) {
this.x = x;
this.y = y;

}
public double getX() { return x; }
public double getY() { return y; }

public void move(double dx, double dy) {
x = x + dx;
y = y + dy;

}
}

public class DisplaceableImpl implements Displaceable {

private Point pt;

public DisplaceableImpl(double x, double y) {
this.pt = new Point(x,y);

}

public double getX() { return pt.getX(); }

public double getY() { return pt.getY(); }

public void move(double dx, double dy) {
pt.move(dx, dy);

}
}

3

public class Rectangle extends DisplaceableImpl implements Shape {
private double w, h;

public Rectangle(double x, double y, double w, double h) {
super(x,y);
this.w = w;
this.h = h;

}

public double getArea() { return w * h; }

public Rectangle getBoundingBox() {
return new Rectangle(getX(), getY(), this.w, this.h);

}

}

public class Circle extends DisplaceableImpl implements Shape {
private double radius;

public Circle(double x, double y, double radius) {
super(x,y);
this.radius = radius;

}

public double getRadius() { return radius; }

public double getArea() { return Math.PI * this.radius * this.radius; }

public Rectangle getBoundingBox() {
return new Rectangle(getX()-radius, getY()-radius,

2 * radius, 2 * radius);
}

}

4

D Appendix: Ticket and TicketMachine Definitions

public class Ticket {
private String color;
private int number;

public Ticket (String c, int n) {
this.color = c;
this.number = n;

}

public String getColor() {
return color;

}

public int getNumber() {
return number;

}
}

public class TicketMachine {
private static String nextColor = "red";
private String myColor;
private int nextNumber = 0;

public static String bumpColor (String c) {
if (c.equals("red")) return "blue";
return "red";

}

public TicketMachine() {
myColor = nextColor;
nextColor = bumpColor(nextColor);

}

public Ticket get() {
nextNumber++;
return new Ticket(myColor, nextNumber);

}
}

5

