
CIS 120 Midterm II November 8, 2019

SOLUTIONS

1



1. Mutable Queues (abstract types, invariants, mutable state, ASM) (30 points total)

Appendix A contains the implementation of the singly-linked queue data structure from
Homework 4, including the create, enq, and deq operations. It also summarizes the (singly-
linked) queue invariants. Section A.1 depicts four queue heap structures, labeled (a) through
(d).

(a) (10 points) Match each of the following code snippets to the heap structures that q will
refer to after running the code, or choose “error” if the code leads to a static (e.g. typecheck-
ing) or dynamic error. The possible heap structures are the ones pictured in the appendix.

i. let q : int queue = create ()
;; enq 1 q

a � b � c � d � error �

ii. let q : int queue = create ()
;; enq 1 q
;; enq 2 q
;; begin match q.tail with

| None -> ()
| Some n -> n.next <- q.head
end

a � b � c � d � error �

iii. let qno : int qnode option = Some { v = 1; next = None }
let q = { head = qno; tail = qno }

a � b � c � d � error �

iv. let q : int queue = create ()
;; enq 1 q
;; begin match q.tail with

| None -> ()
| Some n -> n.next <- Some n
end

a � b � c � d � error �

v. let q : int queue = create ()
;; enq 2 q
;; enq 1 q
;; deq q

a � b � c � d � error �

PennKey: 2



(b) (4 points) Which of the depicted heap values satisfy the queue invariants? (Mark all
that do.)

a � b � c � d �

(c) (16 points) Complete the following code that moves the last node of a queue (i.e. the
one pointed to by the tail) to the head of the queue. Your implementation should reuse the
existing nodes of the queue, so that no additional nodes need to be allocated. If the queue is
empty or contains exactly one node, then nothing needs to be done; we have finished those
cases for you. The resulting modified heap structures should satisfy the queue invariants.

The skeleton code we provide includes a helper function loop, which is intended to iterate
through the queue to find the next-to-last and last nodes. Be sure to fill in its return type, and
use loop as appropriate in the main function body.

ANSWER: There are several ways to correctly implement this program. The so-
lution below does all the work of moving the node to the front at the end of the
loop. You can also return both nodes and do the work in the main body (or split
the difference).

let move_tail_to_head (q : ’a queue) : unit =

let rec remove_last (prev : ’a qnode) (curr : ’a qnode) : unit =
begin match curr.next with
| None -> (∗ c u r r i s t h e l a s t ∗ )

prev.next <- None;
q.tail <- Some prev;
curr.next <- q.head;
q.head <- Some curr

| Some n -> remove_last curr n
end

in

begin match q.head with
| None -> () (∗ q i s empty ∗ )
| Some n ->

begin match n.next with
| None -> () (∗ q i s s i n g l e t o n ∗ )
| Some m -> remove_last n m

end
end

PennKey: 3



OCaml Programming: Mutable State, Closures, Tail Calls (21 points total)

(a) (4 points) Recall the definition of OCaml’s generic reference type:
type ’a ref = {mutable contents : ’a}

For each of the following test cases, fill in the blank with an integer constant
so that the test case will pass.

i. let test () =
let x : int ref = {contents = 3} in
let y : int ref = {contents = 4} in
(x.contents + 1) = y.contents

;; run_test "test1" test

ii. let test () =
let x : int ref = {contents = 3} in
let y : int ref = x in

y.contents <- 17;
x.contents = 17

;; run_test "test2" test

(b) Consider the following program:
let make_find (elt : ’a) : (’a list -> bool) =

let rec loop (lst : ’a list) : bool =
begin match lst with

| [] -> false
| x::xs -> if x = elt then true else loop xs

end
in fun (lst2 : ’a list) -> loop lst2

;; let find3 = make_find 3

i. (2 points) True or False: The function loop is tail recursive.
� True � False

ii. (3 points) Which of the following identifiers’ values will be saved as
bindings in the closure named by find3? (Mark all that apply.)
� make_find

� elt

� loop

� lst

� lst2

� find3

PennKey: 4



(c) (12 points) In our GUI library for Paint, we defined a notifier that was a
container widget and kept a list of event listeners to notify when an event hap-
pened. We want to augment this to additionally keep a count of the number
of events it has handled so far and a function that returns this count.
You need to update the notifier code shown below. Only four additional
lines of code are needed to support this new functionality. What lines need
to be added and where? (You can assume that the code below compiles and
works correctly.)
1 type notifier_controller = {
2 add_event_listener: event_listener -> unit;
3 }
4
5 let notifier (w: widget) : widget * notifier_controller =
6 let listeners = { contents = [] } in
7 { repaint = w.repaint;
8 handle =
9 (fun (g: Gctx.gctx) (e: Gctx.event) ->

10 List.iter (fun h -> h g e) listeners.contents;
11 w.handle g e);
12 size = w.size
13 },
14 { add_event_listener =
15 (fun (newl: event_listener) ->
16 listeners.contents <- newl :: listeners.contents);
17 }

i. Changes need to keep a count of the number of events handled so far

Add Line after Line Number: ____6_____
New line to be added:
let count = contents = 0 in

Add Line after Line Number: ____10____
New line to be added:
count.contents <- count.contents + 1;

ii. Changes need to get the count of the number of events

Add Line after Line Number: ____2_____
New line to be added:
get_count: unit -> int

Add Line after Line Number: ____16____
New line to be added:
get_count = (fun () -> count.contents)

PennKey: 5



Objects in OCaml and Java (25 points total)

(a) (9 points) Given the OCaml code below, answer the following multiple
choice questions. (Each has one correct answer.)
1 type ’a ref = {mutable contents: ’a}
2
3 type counter = {
4 get : unit -> int;
5 set : int -> unit;
6 decr : unit -> int;
7 }
8
9 let mk_counter () : counter =

10 let cnt : int ref = {contents = 0} in
11 let ctr : counter = {
12 get = (fun () -> cnt.contents);
13 set = (fun x -> cnt.contents <- x);
14 decr = (fun () -> cnt.contents <- cnt.contents - 1;
15 cnt.contents);
16 }
17 in ctr
18
19 let ctr1 = mk_counter ()

i. The closest analog in Java to the code on lines 3–7 would define:
� a constructor
� a class
� an interface
� a set of fields

ii. The closest analog in Java to the code on line 10 would correspond to a
field declared as:

� public static int cnt;

� private static int cnt;

� public int cnt;

� private int cnt;

iii. The closest analog in Java to the code on line 19 would correspond to:
� creating an instance by invoking a constructor
� invoking a static method
� invoking a method via dynamic dispatch
� creating an instance via inheritance

PennKey: 6



(b) (6 points) Given the Java code below, which of the following statements are
true? (Mark all that apply.)
1 A a = new B();
2 C c = a.m1();
3 a.____();

� For line 1 to compile successfully, B has to be a supertype of A.
� For line 1 to compile successfully, B cannot be an interface type.
� For line 2 to compile successfully, C has to be a supertype of the return

type of m1().
� For line 2 to compile successfully, C cannot be an interface type.
� For lines 1 and 2 to compile successfully, the method m1() has to be

available via type A.
� For line 3 to compile successfully, the blank can be filled by methods

defined only in type B.

(c) (10 points) Indicate whether the following statements are true or false.
a. True � False �

In OCaml, a single interface can define more than one abstract type
whose implementations might be related.

b. True � False �
In Java, a class may implement more than one type.

c. True � False �
In OCaml, if we have a record with three fields, it is possible for one of
the fields to be null.

d. True � False �
In Java, it is possible for a class to have no public methods.

e. True � False �
In Java, it is possible for a class to extend two classes, neither of which
is a subtype of the other.

PennKey: 7



Java Array Programming (24 points)
In Java, a two dimensional array can be ragged, which means that it is not “rect-
angular” in shape. More precisely, a ragged 2D array a has an index i such that
a[0].length is not equal to a[i].length.
Write a function pad, that takes a potentially ragged 2D array of integers and
returns a “padded” copy p, which is the smallest rectangular array such that if
a[i][j] is defined (i.e., it doesn’t lead to an ArrayIndexOutOfBoundsException),
then p[i][j] = a[i][j] and otherwise, p[i][j] = 0.
Pictorially, if a is as shown below, then pad(a) will be the same as a but with 0s
filling out the rectangle:

a pad(a)
0 1 2 3 0 0 1 2 3 0
4 5 4 5 0 0 0
6 7 8 6 7 8 0 0
9 9 0 0 0 0

You may assume that the input array a is not null and that it contains no null
sub-arrays. Note that a[i] refers to the row i in a.

public int[][] pad(int[][] a) {
int[][] result = new int[a.length][];
int max = 0;
for (int i = 0; i < a.length; i++) {

if (max < a[i].length) {
max = a[i].length;

}
}

for (int i = 0; i < a.length; i++) {
result[i] = new int[max];
for (int j = 0; j < a[i].length; j++) {

result[i][j] = a[i][j];
}

}
return result;

}

PennKey: 8



A Appendix: Queue Implementation

type ’a qnode = { v: ’a;
mutable next: ’a qnode option }

type ’a queue = { mutable head: ’a qnode option;
mutable tail: ’a qnode option }

(∗ INVARIANT :
− q . head and q . t a i l are e i t h e r bo th None , or
− q . head and q . t a i l bo th p o i n t t o Some nodes , and

− q . t a i l i s r e a c h a b l e by f o l l o w i n g ’ nex t ’ p o i n t e r s
from q . head

− q . t a i l ’ s n e x t p o i n t e r i s None
∗ )

let create () : ’a queue =
{ head = None; tail = None }

(∗ Add an e l e m e n t t o t h e t a i l o f a queue ∗ )
let enq (elt: ’a) (q: ’a queue) : unit =

let newnode = { v = elt; next = None } in
begin match q.tail with
| None ->

(∗ Note t h a t t h e i n v a r i a n t t e l l s us t h a t q . head i s a l s o None ∗ )
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

(∗ Remove an e l e m e n t from t h e head o f t h e queue ∗ )
let deq (q: ’a queue) : ’a =

begin match q.head with
| None ->

failwith "deq called on empty queue"
| Some n ->

q.head <- n.next;
if n.next = None then q.tail <- None;
n.v

end



A.1 Example Queue Values

(a) (b)

(c) (d)


