
CIS 120 Midterm II March 29, 2019

SOLUTIONS

1



1. Mutable Lists (abstract types, invariants, mutable state, ASM)
In this problem we will implement a mutable linked list abstraction, with operations for
setting a “current position” in the list, for getting the value at this position, and for inserting
new elements.

The interface and a partial implementation of the operations are shown in Appendix A and
Appendix B. Look at these appendices now to familiarize yourself with the operations pro-
vided and their intended behaviors. Make sure you read both appendices carefully!

Now, suppose we execute the following top-level commands:
let m = empty ()
;; insert_first m 2
;; insert_first m 3
;; insert_first m 4
;; advance m

(a) (2 points) After executing these commands, what value will be returned by the expres-
sion current m?

� None � Some 2 � Some 3 � Some 4 � error

(b) (2 points) After executing the commands at the top of the page, what value will be
returned by the expression to_list m?

� [] � [3;4] � [4;3] � [2;3;4] � [4;3;2]

(c) (11 points) Draw the ASM stack and heap after executing the commands at the top of
the page.

2



(d) (8 points) When the programmer first wrote this code, they implemented empty like
this:
let theemptylist : ’a mlist = { first = None; current = None }
let empty () : ’a mlist = theemptylist

Write a test case that fails if we use this version of empty and succeeds if we use the
correct version given in the appendix.
;; run_test "test empty" (fun () ->

let m1 = empty () in
insert m1 1;
let m2 = empty () in
current m2 = None

)

(e) (16 points) Fill in the blanks in the following implementation of the insert function.
let insert (m: ’a mlist) (x: ’a) : unit =
begin match m.current with
None ->
(∗ List is empty: insert at the beginning ∗)
m.first <- Some { v=x; next=None };
m.current <- m.first

| Some c ->
(∗ List is nonempty: insert after current ∗)
c.next <- Some { v=x; next=c.next };
m.current <- c.next

end

3



2. OCaml ASM and Deques (12 points)

As we saw in from Homework 4, deques are similar to queues, but with the ability to insert
and delete at both ends: they are “double-ended queues.” Here is the representation invariant
for deques, slightly reworded from HW04 and with each clause labeled by a letter:

(a) Either head and tail are both None, or they are both Some.

(b) If head = Some n1 and tail = Some n2, then n2 is reachable from n1 by fol-
lowing next pointers (perhaps zero times—i.e., n1 and n2 can be the same node).

(c) If head = Some n1 and tail = Some n2, then n1.prev = None.

(d) If head = Some n1 and tail = Some n2, then n1 is reachable from n2 by fol-
lowing prev pointers (perhaps zero times).

(e) If head = Some n1 and tail = Some n2, then n2.next = None.

(f) For every node n in the deque:

• if n.next = Some m then m.prev = Some n, and

• if n.prev = Some m then m.next = Some n.

For each of the ASM heaps pictured below, indicate whether each part of the invariant is
satified (Yes) or not (No).

For example:

(a) Yes � No �

(b) Yes � No �

(c) Yes � No �

(d) Yes � No �

(e) Yes � No �

(f) Yes � No �

4



(a) Either head and tail are both None, or they are both Some.

(b) If head = Some n1 and tail = Some n2, then n2 is reachable from n1 by fol-
lowing next pointers (perhaps zero times—i.e., n1 and n2 can be the same node).

(c) If head = Some n1 and tail = Some n2, then n1.prev = None.

(d) If head = Some n1 and tail = Some n2, then n1 is reachable from n2 by fol-
lowing prev pointers (perhaps zero times).

(e) If head = Some n1 and tail = Some n2, then n2.next = None.

(f) For every node n in the deque:

• if n.next = Some m then m.prev = Some n, and

• if n.prev = Some m then m.next = Some n.

(i)

(a) � Yes � No
(b) � Yes � No
(c) � Yes � No
(d) � Yes � No
(e) � Yes � No
(f) � Yes � No

(ii)

(a) � Yes � No
(b) � Yes � No
(c) � Yes � No
(d) � Yes � No
(e) � Yes � No
(f) � Yes � No

5



3. Program Design: OCaml Objects and Stateful Abstractions

Step 1: Understand the problem: A stream is an abstraction that represents an infinite
sequence of values. In OCaml, we write the (generic) type of streams as ’a stream.

Informally, we can write down a stream as a series of values, but, since it is infinite, we can’t
write down the whole stream. Here are some examples:

• A constant int stream of all 0 values:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... (∗ forever ∗)

• A constant int stream of all 42 values:
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 ... (∗ forever ∗)

• An interleaved int stream of 0’s and 42’s:
0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 42 0 ... (∗ forever ∗)

• A stream of increasing integers:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... (∗ forever ∗)

• An interleaved int stream of increasing integers and 42’s:
0 42 1 42 2 42 3 42 4 42 5 42 6 42 7 42 8 42 9 42 10 ... (∗ forever ∗)

Streams, like the widgets from the GUI assignment, are most useful when they encapsulate
some state. Also like widgets, there are sensible ways, such as interleaving, to combine
multiple streams. This problem explores how to implement streams as objects in OCaml.

Step 2: Define the interface Being infinite, it is impossible to compute using all of the
elements of a stream at once. Instead, code that uses a stream can ask it to produce the
next element in the sequence. In fact, the only interesting operation a stream provides is the
ability to produce the next element. That leads us to this type definition for stream objects:
type ’a stream = { produce : unit -> ’a; }

As in the widget library, the stream interface is represented as a record containing fields for
each method—here, just the method produce. Note that the produce method can be stateful,
so successive calls to produce will yield different values.

Given the examples above, we also expect to be able to define these operations for creating
streams:
val constant_stream : ’a -> ’a stream (∗ Makes a constant stream ∗)
val new_increasing : unit -> int stream (∗ Makes a new stream of increasing integers ∗)
val interleave : ’a stream -> ’a stream -> ’a stream (∗ Interleave two streams ∗)

Finally, since we can ask a stream to produce only one element at a time, it is useful to have
an operation that “takes” the first n elements from a stream and makes them into a list:
val take : int -> ’a stream -> ’a list

6



Steps 3 & 4: Write test cases & Implement As an example, here is a correct implemen-
tation of constant_stream and a corresponding test case:
let constant_stream (x:’a) : ’a stream = {
produce = (fun () -> x);

}

let test () : bool =
let s = constant_stream 42 in
s.produce () = 42 &&
s.produce () = 42 &&
s.produce () = 42

;; run_test "first three elements of constant 42" test

(a) (4 points) An increasing integer stream is just like a counter object (as seen in class)
except that its method is named “produce” instead of “get”. Consider this code for
new_increasing, which is intended to generate new increasing stream objects, and a
test case:
let ctr = { contents = 0 }
let new_increasing () : int stream =
{
produce = (fun () ->

let ans = ctr.contents in
ctr.contents <- ctr.contents + 1;
ans);

}

let test () : bool =
let s = new_increasing () in
s.produce () = 0 &&
s.produce () = 1 &&
s.produce () = 2 &&
s.produce () = 3
;; run_test "first four elements of increasing" test
;; run_test "first four elements of increasing" test (∗ <−− duplicate! ∗)

Notice that the programmer has accidentally duplicated the line that runs the test.
Which of the following behaviors would we observe when this program is run?
(Choose one)

� Both runs of the test fail.
� The first run of the test passes and the second one fails.
� The first run of the test fails and the second one passes.
� Both runs of the test pass.

7



(b) (8 points) Here is a (correct) implementation of the take operation on streams and one
example test case. This version of take is written using standard recursion:
let take (n:int) (s:’a stream) : ’a list =
let rec loop (i:int) : ’a list =
if i <= 0 then [] else (s.produce ())::(loop (i-1))

in
loop n

let test () : bool =
let s = constant_stream 42 in
take 5 s = [42; 42; 42; 42; 42]
;; run_test "take five from the constant 42 stream"

Rewrite take, by completing the code template below, to use iteration via tail recursion
instead of plain recursion. Your implementation should use constant stack space and
may make use of the library function List.rev, which reverses a list. Hint: you will
need to add an extra argument to loop.

Answer:

let take (n:int) (s:’a stream) : ’a list =
let rec loop (i:int) (acc:’a list) : ’a list =
if i <= 0 then List.rev acc else
loop (i-1) (s.produce () :: acc)

in
loop n []

8



(c) (11 points) Now implement the stream combinator interleave, which takes two
streams and produces a single stream that alternates between producing elements from
the first and the second stream (starting with the first). We have given you two test
cases, based on the examples from earlier. Hint: What additional state does interleave
need to maintain?

let interleave (s1:’a stream) (s2:’a stream) : ’a stream =
let first = { contents = true } in
{
produce = (fun () ->

let ans =
if first.contents then s1.produce () else s2.produce ()

in
first.contents <- not (first.contents);
ans);

}

let test () : bool =
take 5 (interleave (constant_stream 0) (constant_stream 42)) =
[0; 42; 0; 42; 0;]
;; run_test "interleave two streams" test

let test () : bool =
take 5 (interleave (new_increasing ()) (constant_stream 42)) =
[0; 42; 1; 42; 2]

;; run_test "interleave ints and 42s streams" test

9



(d) (12 points) Streams, like widgets, can be extended with additional methods. As pre-
sented so far, streams can be hard to use because with every call to produce, the state
of the stream (possibly) changes. One way to fix that is to add a method that lets us
“peek” at the next element that will be produced by the stream without causing the
stream state to advance to the next value. We call such streams “buffered” because they
store the next element to produce in a private field, allowing peek to be called one or
more times, if desired, before produce yields the value and advances the stream.
As with the “controller” objects from the GUI assignment, we express the new method
as a record and have the constructor function for a buffered stream produce both records.
Complete this code for making a buffered stream. We have given you a test that illus-
trates peek’s behavior:
type ’a buffered = { peek : unit -> ’a; }

let mk_buffered (s:’a stream) : ’a stream * ’a buffered =
let buf = {contents = s.produce ()} in
(
{
produce = (fun () ->

let ans = buf.contents in
buf.contents <- s.produce ();
ans)

},
{
peek = (fun () -> buf.contents)

}
)

let test () : bool =
let (s,b) = mk_buffered (new_increasing ()) in
b.peek () = 0 &&
b.peek () = 0 &&
b.peek () = 0 &&
s.produce () = 0 &&
b.peek () = 1 &&
b.peek () = 1 &&
s.produce () = 1 &&
b.peek () = 2

;; run_test "peek doesn’t change stream; produce updates peek" test

10



4. Java Basics (6 points)

For each of the statement below select the correct option(s):

(a) Which keyword is used to make a Java variable immutable?
� static � constant � final

(b) Which Java type is similar to the unit type in OCaml?
� void � enum � null

(c) A Java class can implement multiple interfaces.
� true � false

11



5. Reference vs. Structural Equality in Java (8 points)

Consider the following class:
public class Tuple{

private int fst;
private int snd;

public Tuple (int fst, int snd){
this.fst = fst;
this.snd = snd;

}

public boolean equals(Tuple t){
return this.fst == t.fst && this.snd == t.snd;

}
}

(a) What is the value of ans at the end of this program?
Tuple t1 = new Tuple(2, 4);
Tuple t2 = new Tuple(2, 4);
boolean ans = (t1 == t2);

� true � false

(b) What is the value of ans at the end of this program?
Tuple t1 = new Tuple(2, 4);
Tuple t2 = new Tuple(2, 4);
boolean ans = (t1.equals(t2));

� true � false

(c) What is the value of ans at the end of this program?
Tuple t1 = new Tuple(2, 4);
Tuple t2 = t1;
boolean ans = (t1 == t2);

� true � false

(d) What is the value of ans at the end of this program?
Tuple t1 = new Tuple(2, 4);
Tuple t2 = t1;
boolean ans = (t1.equals(t2));

� true � false

12



Feel free to use this page as scratch paper. (If you write anything here that you want us to
grade, make sure you clearly indicate this in the answer area earlier in the exam.)

13



14



A Appendix: Mutable List Interface

module type MLIST = sig

type ’a mlist

(∗ Create a new empty mutable list ∗)
val empty : unit -> ’a mlist

(∗ Return the value of the current element (or None if the list is empty) ∗)
val current : ’a mlist -> ’a option

(∗ Reset the ”current element” pointer to the beginning of the list ∗)
val reset : ’a mlist -> unit

(∗ Advance the ”current element” pointer one list −element to the
right , if possible . The values in the list are unchanged. ∗)

val advance : ’a mlist -> unit

(∗ Insert a new element at the very beginning of the mlist . After
this operation , the current element pointer points to the newly
inserted element . ∗)

val insert_first : ’a mlist -> ’a -> unit

(∗ Insert a new element after the current element . After this
operation , the current element pointer points to the newly
inserted element . ∗)

val insert : ’a mlist -> ’a -> unit

(∗ Convert the whole mlist to a plain list ∗)
val to_list : ’a mlist -> ’a list

end

15



B Appendix: Mutable List Implementation

module MList : MLIST = struct
type ’a mlnode =
{ v: ’a;
mutable next: ’a mlnode option }

type ’a mlist =
{ mutable first: ’a mlnode option;
mutable current: ’a mlnode option }

let empty () : ’a mlist = { first = None; current = None }

let current (m: ’a mlist) : ’a option =
begin match m.current with
| None -> None
| Some n -> Some n.v
end

let reset (m: ’a mlist) : unit =
m.current <- m.first

let advance (m: ’a mlist) : unit =
begin match m.current with
| None -> ()
| Some c -> m.current <- c.next
end

let insert_first (m: ’a mlist) (x: ’a) : unit =
m.first <- Some { v=x; next=m.first };
m.current <- m.first

let insert (m: ’a mlist) (x: ’a) : unit =
failwith "implement me!"

let to_list (m: ’a mlist) : ’a list =
let rec loop (no: ’a mlnode option) : ’a list =
begin match no with
| None -> []
| Some n -> n.v :: loop n.next
end in

loop m.first
end

16


