
Programming Languages
and Techniques

(CIS120)

Lecture 1

Welcome
Introduction to Program Design

Introductions
• Steve Zdancewic*

– Levine Hall 511
– stevez@cis.upenn.edu
– http://www.cis.upenn.edu/~stevez/
– Office hours: Mondays 3:30 – 5:00pm

(& by appointment)

• Swapneel Sheth
– Levine Hall 264
– swapneel@cis.upenn.edu
– http://www.cis.upenn.edu/~swapneel
– Office hours: Tues. 10:30am – 12:30pm

(& by appointment)

CIS120 / Spring 2012 6

*Pronounced phonetically as: “zuh dans wick”. I won’t get upset if you mispronounce my name (really!). I will answer to anything remotely close, or,
you can call me just Professor, or Professor Z. Whatever you feel comfortable with.

http://www.cis.upenn.edu/~stevez/
mailto:swapneel@cis.upenn.edu
http://www.cis.upenn.edu/~swapneel

What is CIS 120?
• CIS 120 is a course in program design
• Practical skills:

– ability to write larger (~1000 lines)
programs

– increased independence
("working without a recipe")

– test-driven development, principled
debugging

• Conceptual foundations:
– common data structures and algorithms
– several different programming idioms
– focus on modularity and compositionality
– derived from first principles throughout

• It will be fun!

CIS120

Prerequisites

• We assume you can already write small (10- to 100-
line) programs in some imperative or object-oriented
language
– Java experience is strongly recommended
– CIS 110 or AP CS is typical
– You should be familiar with using a compiler, editing code,

and running programs you have created

• CIS 110 is an alternative to this course
– See: https://advising.cis.upenn.edu/cis110
– If you have doubts, come talk to an instructor or one of the

TAs to figure out the right course for you

CIS120

https://advising.cis.upenn.edu/cis110

CIS 120 Tools

• OCaml
– Industrial-strength, statically-typed

functional programming language
– Lightweight, approachable setting for

learning about program design

• Java
– Industrial-strength, statically-typed

object-oriented language

– Many tools/libraries/resources available

• Eclipse
– Widely used IDE

CIS120

Codio
• Codio codio.com
– web-based development

environment
– see Piazza / class mailing list

for setup info
– remote access for on-line TA help

• Under the hood:
– linux virtual machine (Ubuntu)
– pre-configured per project with everything you need

CIS120

Why two languages??
• Clean pedagogical progression
• Level playing field for class with disparate

backgrounds
• Practice in learning new tools
• Different perspectives on programming

CIS120

“[OCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer.''
--- Anonymous CIS 120 Student

“[The OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.'’

---Anonymous CIS 120 Student

Philosophy
• Introductory computer science

– Start with basic skills of “algorithmic
thinking” (AP/110)

– Develop systematic design and analysis
skills in the context of larger and more
challenging problems (120)

– Practice with industrial-strength tools and
design processes (120, 121, and beyond)

• Role of CIS120 and program design
– Start with foundations of programming

using the elegant design and precise
semantics of the OCaml language

– Transition (back) to Java after setting up
the context needed to understand why
Java and OO programming are useful tools

– Give a taste of the breadth and depth of CS

CIS120

Administrivia

http://www.seas.upenn.edu/~cis120/

http://www.cis.upenn.edu/~cis120/current/syllabus.shtml

Course Grade Breakdown
• Lectures (2% of final grade)

– Presentation of ideas and concepts, interactive demos
– Lecture notes & screencasts available on course website.
– Grade based on participation using “Poll Everywhere”

• Recitations / Labs (6% of final grade)
– Practice and discussion in small group setting
– Grade based on participation

• Homework (50% of final grade)
– Practice, experience with tools
– Exposure to broad ideas of computer science
– Grade based on automated tests + style
– First assignment due Sept. 10 – available now

• Exams (42% of final grade)
– 2 midterms (12% each) and a final (18%)
– In class exams (pencil and paper)
– Do you understand the terminology? Can you reason about

programs? Can you synthesize solutions?
CIS120

Warning: This is a
challenging and
time consuming
(and hopefully
rewarding :-))

course!

Building a GUI Framework

Some of the homework assignments…

CIS120

Computing with DNA

Image Processing
Chat Client/Server

Final project: Design a Game

CIS120

Lectures / Recitations / Lab Sections
• The lecture material in the sections 001 and 002 will

be identical
• Recitations start next week
– Bring your laptops to recitation
– Try Codio before the first meeting

• Goals of first meeting:
– Meet your TAs and classmates
– Practice with OCaml before your first homework is due

• Office hours times on the web site calendar
(under “Help” tab)
– Will be filled out soon

CIS120

Poll Everywhere

• We will use Poll Everywhere for interactive exercises
during most lectures
– Wrong answers do not count against your grade

• You use your phone & website to post your answer.
• You can also text the answer directly
• Bring it to lecture every day, beginning Friday
– Participation grades start Monday in 2 weeks

CIS120

No Devices
• Laptops closed… minds open

– Although this is a computer science class,
the use of electronic devices – laptops,
cellphones, Kindles, iPads, etc., during
lecture (except for participating in quizzes)
is prohibited.

• Why?
– Laptop users tend to surf/chat/e-

mail/game/text/tweet/etc.
– They also distract those around them
– Better to take notes by hand
– You will get plenty of time in front of your

computers while working on the course
projects :-)

CIS120

Piazza
• We will use Piazza for most communications in this

course
– from us to you
– from you to us
– from you to each other

• If you are registered for the course, you should have
been signed up automatically

• If not, please sign up at piazza.com

CIS120

Academic Integrity
• Submitted homework must be your individual work

• Not OK:
– Copying or otherwise looking at someone else’s code
– Sharing your code in any way

(copy-paste, github, paper and pencil, …)
– Using code from a previous semester

• OK (and encouraged!):
– Discussions of concepts
– Discussion of debugging strategies
– Verbally sharing experience

CIS120

Penn’s code of academic integrity:
http://www.upenn.edu/academicintegrity/ai_codeofacademicintegrity.html

Enforcement
• Course staff will check for copying
– We use plagiarism detection tools on your code

Violations will be treated seriously!

• Questions? See the course FAQ. If in doubt, ask.

CIS120

Program Design

Fundamental Design Process

CIS120

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
How does the program behave on typical inputs?

On unusual ones? On erroneous ones?
4. Implement the required behavior

Often by decomposing the problem into simpler ones
and applying the same recipe to each

Design is the process of translating informal
specifications (“word problems”) into running code.

5. Revise / Refactor / Edit

A design problem

Imagine that you own a movie theater. The more you
charge, the fewer people can afford tickets. In a recent
experiment, you determined a relationship between the
price of a ticket and average attendance. At a price of
$5.00 per ticket, 120 people attend a performance.
Decreasing the price by a dime ($.10) increases
attendance by 15.
However, increased attendance also comes at increased
cost; each attendee costs four cents ($0.04). Every
performance also has a base cost of $180.
At what price do you make the highest profit?

CIS120

Step 1: Understand the problem
• What are the relevant concepts?
– (ticket) price
– attendees
– revenue
– cost
– profit

• What are the relationships among them?
– profit = revenue – cost
– revenue = price * attendees
– cost = $180 + attendees * $0.04
– attendees = some function of the ticket price

• Goal is to determine profit, given the ticket price

CIS120

So profit, revenue, and cost
also depend on price.

Step 2: Formalize the Interface

CIS120

(* Money is represented in cents. *)
let profit (price : int) : int = …

type annotations
declare the input

and output types**

comment documents
the design decision

**OCaml will let you omit these type annotations, but including them is mandatory for CIS120. Using type annotations is good
documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the first thing you should do is check that your type annotations are there and that they are what you expect.

Idea: we’ll represent money in cents, using integers*

* Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language…

Step 3: Write test cases
• By looking at the design problem, we can calculate

specific test cases

CIS120

let profit_500 : int =
let price = 500 in
let attendees = 120 in
let revenue = price * attendees in
let cost = 18000 + 4 * attendees in
revenue - cost

Writing the Test Cases in OCaml
• Record the test cases as assertions in the program:
– the command run_test executes a test

CIS120

let test () : bool =
(profit 500) = profit_500

;; run_test "profit at $5.00" test

a test is just a function that takes no input and returns true if the test succeeds

note the use of double semicolons
before commands

the string in quotes identifies
the test in printed output

(if it fails)

Step 4: Implement the Behavior
profit, revenue, and cost are easy to define:

CIS120

let attendees (price : int) = ...

let profit (price : int) =
(revenue price) – (cost price)

Apply the Design Pattern Recursively
attendees requires a bit of thought:

CIS120

let attendees (price : int) : int =
failwith “unimplemented”

let test () : bool =
(attendees 500) = 120

;; run_test "attendees at $5.00" test

let test () : bool =
(attendees 490) = 135

;; run_test "attendees at $4.90" test
generate the tests
from the problem

statement first.

*Note that the definition of attendees must go before the definition of profit
because profit uses the attendees function.

“stub out”
unimplemented

functions

Attendees vs. Ticket Price

CIS120

0

20

40

60

80

100

120

140

160

 $4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

Assume a linear relationship between ticket price
and number of attendees.
Equation for a line: y = mx + b

m = (diff in attendance / diff in price) = - 15 / 10
b = attendees – m * price = 870

$0.10

-15

let attendees (price:int) : int =
-15/10 * price + 870

Run!

CIS120

Run the program!

CIS120

• One of our test cases for attendees failed…
• Debugging reveals that integer division is tricky*

• Here is the fixed version:

let attendees (price:int) :int =
(-15 * price) / 10 + 870

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 rounds to -1. Multiplying -15*price before dividing by 10
increases the precision because rounding errors don’t creep in.

Using Tests
Modern approaches to software engineering advocate

test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we may provide one or
more tests for each of the problems. They will
generally not be complete. You should start each
problem by making up more tests.

CIS120

How not to Solve this Problem

This program is bad because it
– hides the structure and abstractions of the problem
– duplicates code that could be shared
– doesn’t document the interface via types and comments

Note that it still passes all the tests!

CIS120

let profit price =
price * (-15 * price / 10 + 870) -
(18000 + 4 * (-15 * price / 10 + 870))

Summary
• To read: Chapter 1 of the lecture notes and course

syllabus. Both available on the course website

• To do: Sign up for Codio and try to log in.
– TAs will hold office hours this week to help.
– You can also use Piazza for discussions.

• To do: Register for Poll Everywhere.
– Polls will start on Friday.

CIS120

Textbook

• Textbook (free download)
– http://www.seas.upenn.edu/~cis120/current/notes/120no

tes.pdf
– written by the course instructors, closely follows the

lectures
– updated throughout the semester

CIS120

http://www.seas.upenn.edu/~cis120/current/notes/120notes.pdf

