
Programming Languages
and Techniques

(CIS120)

Lecture 2
Value-Oriented Programming

If you are joining us today…
• Read the course syllabus/lecture notes on the website

– www.cis.upenn.edu/~cis120
• Sign yourself up for Piazza

– piazza.com/upenn/fall2019/cis120
• Try out Codio

– www.cis.upenn.edu/~cis120/current/codio.shtml
• Sign yourself up for Poll Everywhere

– Details are in Piazza

• If you aren’t registered for the class yet, please fill out the
waitlist form (on the web pages)

• If you are registered, but want to switch the lecture/recitation
section, please fill out the “Switch Recitations or Lectures” Form

• No laptops, tablets, smart phones, etc., during lecture (except for
participating in PollEverywhere quizzes)

CIS120

Announcements
• Please read:
– Chapter 2 of the course notes
– OCaml style guide on the course website

(http://www.seas.upenn.edu/~cis120/current/programming_style.shtml)

• Homework 1: OCaml Finger Exercises
– Available from Schedule page on course website
– Practice using OCaml to write simple programs
– Due: September 10th, at 11:59:59pm (midnight)
– Start early!
– Start with first 4 problems

(lists will be introduced next week!)

CIS120

Homework Policies
• Projects will be (mostly) automatically graded with immediate feedback

– We’ll give you some tests, as part of the assignment
– You’ll write your own tests to supplement these
– Our grading script will apply additional tests
– Your score is based on how many of these you pass
– Your code must compile to get any credit

• Multiple submissions are allowed
– First few submissions: no penalty
– Each submission after the first few will be penalized
– Your final grade is determined by the best raw score

• Late Policy
– Submission up to 24 hours late costs 10 points
– Submission 24-48 hours late costs 20 points
– After 48 hours, no submissions allowed

• Style / Test cases:
– manual grading of non-testable properties
– feedback on style from your TAs

CIS120

Important Dates

• Homework:
– Homework due dates will be listed on course calendar
– Tuesdays at midnight: see schedule on web

• Exams:
– 12% First midterm: Friday, September 27th in class
– 12% Second midterm: Friday, November 8th in class
– 18% Final exam:

(Tentatively) Tuesday, December 17th at 6:00PM
– Contact instructor well in advance if you have a conflict

– Make-up Exam Times will be announced beforehand

CIS120

Where to ask questions
• Course material
– Piazza Discussion Boards
– TA office hours, on webpage calendar
– Tutoring
– Prof office hours:

Sheth…….......Tuesdays 10:30am – 12:30pm
Zdancewic…..Mondays 3:30 – 5:00pm
or by appointment (changes will be announced on Piazza)

• HW/Exam Grading: see webpage
• About CIS majors & Registration
– Desirae Cesar or Laura Fox, Levine 309

CIS Undergraduate coordinators

CIS120

Poll Everywhere

Poll Everywhere Basics
• Beginning today, we’ll use Poll Everywhere in each

lecture
– Grade recording starts Monday 9/9

• You can use your phone, laptop, etc. to go the
website.

• You can also use your phone to text directly

• Polls will be restricted to registered participants
• Register with your Penn Email Address if you haven’t

already

https://pollev.com/penncis120/register
CIS120

Programming in OCaml

Read Chapter 2 of the CIS 120 lecture notes,
available from the course web page

What is an OCaml module?
;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x : int = attendees 500

;; print_int x
;; print_endline "end of demo"

CIS120

module import

(top level) commands

function declarations
(use let keyword)

identifier declarations
(also use let)

To know what will be printed
we need to know the
value of this expression

What does an OCaml program do?

CIS120

To know what an OCaml program will do, we need to know
what the value of each expression is

To know if the test will pass,
we need to know whether this
expression is true or false

;; open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool =
attendees 500 = 120

;; run_test "attendees at 5.00" test

let x = attendees 500

;; print_int x

Value-Oriented Programming

pure, functional, strongly typed

Course goal

• Beautiful code
– is simple
– is easy to understand
– is easy(er) to get right
– is easy to maintain
– takes skill to write

CIS120

Strive for beautiful code.

Value-Oriented Programming
• Java, C, C#, C++, Python, Perl, etc. are tuned for an

imperative programming style
– Programs are full of commands

• “Change x to 5!”
• “Increment z!”
• “Make this point to that!”

• OCaml, on the other hand, promotes a
value-oriented style
– We’ve seen that there are a few commands…

print_endline, run_test

… but these are used rarely
– Most of what we write is expressions denoting values

CIS120

Metaphorically, we might say that

imperative programming is about doing
while

value-oriented programming is about being

CIS120

Programming with Values
• Programming in value-oriented (a.k.a. pure or functional)

style can be a bit challenging at first

• But it often leads to code that is much more beautiful

CIS120

Values and Expressions

• Each type corresponds to a set of well-typed values.

CIS120

Types Values Operations* Expressions

int -1 0 1 2 + * - / 3 + (4 * x)

float 0.12 3.1415 +. *. -. /. 3.0 *. (4.0 *. a)

string “hello” “CIS120” ^ (concatenation) “Hello, ” ^ s

bool true false && || not (not b1) || b2

*Note that there is no automatic conversion from float to int, etc., so you must use explicit conversion
operations like string_of_int or float_of_int

Types
• Every identifier has a unique associated type.
• "Colon" notation associates an identifier with its type:

x : int a : float
s : string b1 : bool

• Every OCaml expression has a unique type determined by its
constituent subexpressions

CIS120

x + (int_of_float (a +. 2.3))
: int : float

: float

: int

: int

Type Errors
• OCaml will use type inference to check that your

program to ensure that it uses types consistently.
– It will give you an error if not

CIS120

x + (string_of_float (a +. 2.3))
: int : float

: float

: string

ERROR: expected int but found string
NOTE: Every time OCaml points
out a type error, it is indicating a
likely bug! Well-typed Ocaml
programs often "just work".

Sneak Preview
• OCaml has a rich type structure:

(+) : int -> int -> int function types
string_of_int : int -> string

() : unit
(1, 3.0) : int * float tuple types

[1;2;3] : int list list types

• We will see all of these (and how to define our own
brand new types) in upcoming lectures…

CIS120

Calculating Expression Values

OCaml’s model of computation

CIS120

Simplification vs. Execution
• We can think of an OCaml expression as just a way of

writing down a value
• We can visualize running an OCaml program as a

sequence of calculation or simplification steps that
eventually lead to this value

• (By contrast, a running Java program is best thought
of as performing a sequence of actions or commands

• … a variable named x gets created
• … then we put the value 3 in x
• … then we test whether y is greater than z
• … the answer is true, so we put the value 4 in x

– Each command modifies the implicit, pervasive state of the
machine)

CIS120

Calculating with Expressions
OCaml programs mostly consist of expressions.

Expressions simplify to values:

3 ⇒ 3 (values compute to themselves)

3 + 4 ⇒ 7
2 * (4 + 5) ⇒ 18
attendees 500 ⇒ 120

The notation <exp> ⇒ <val> means that the expression
<exp> computes to the final value <val>.

CIS120

Note that the symbol ‘⇒’ is not OCaml syntax. We’re using it to
talk about the way OCaml programs behave.

Step-wise Calculation
• We can break down ⇒ in terms of single step

calculations, written ⟼

• For example:
(2+3) * (5-2)

⟼ 5 * (5-2) because 2+3 ⟼ 5
⟼ 5 * 3 because 5-2 ⟼ 3
⟼ 15 because 5*3 ⟼15

CIS120

Conditional Expressions

• OCaml conditionals are also expressions: they can be
used inside of other expressions:

CIS120

if s = "positive" then 1 else -1

if day >= 6 && day <= 7
then "weekend" else "weekday"

(if 3 > 0 then 2 else -1) * 100

if x > y then "x is bigger"
else if x < y then "y is bigger"
else "same"

Simplifying Conditional Expressions
• A conditional expression yields the value of either its ‘then’-

branch or its ‘else’-branch, depending on whether the test is
‘true’ or ‘false’.

• For example:
(if 3 > 0 then 2 else -1) * 100

⟼ (if true then 2 else -1) * 100
⟼ 2 * 100
⟼ 200
• The type of a conditional expression is the (single!) type

shared by both of its branches.
• It doesn’t make sense to leave out the ‘else’ branch in an ‘if’.

(What would be the result if the test was ‘false’?)

CIS120

Top-level Let Declarations
• A let declaration gives a name (a.k.a. an identifier) to

the value denoted by some expression

• The scope of a top-level identifier is the rest of the
file after the declaration.

CIS120

let pi : float = 3.14159
let seconds_per_day : int = 60 * 60 * 24

“scope” of a name = ”the region of the
program in which it can be used”

Immutability
• Once defined by let, the binding between an

identifier and a value cannot be changed!

CIS120

int x = 3;
x = 4;

Java / C / C++ / …
imperative update

'x = 4' is a command
that means 'update the

contents of location
x to be 3'

The state associated with 'x'
changes as the program runs.

let x : int = 3 in
x = 4

Ocaml
named expressions

'let x : int = 3 ' simply gives
the value 3 the name 'x'

'x = 4' asks does 'x equal 4'?
(a boolean value, false)

Once defined, the value
bound to 'x' never changes

Local Let Expressions
• Let declarations can appear both at top-level and nested

within other expressions.

• Local (nested) let declarations are followed by ‘in’
– e.g. attendees, revenue, and cost

• Top-level let declarations do not use ‘in’
– e.g. profit_500

• The scope of a local identifier is just the expression after the
‘in’

CIS120

let profit_500 : int =
let attendees = 120 in
let revenue = attendees * 500 in
let cost = 18000 + 4 * attendees in
revenue – cost

The scope of
attendees is

the expression
after the ‘in’

Typing Let Expressions

• A let-bound identifier has the type of the expression
it is bound to.

• The type of the whole local let expression is the type
of the expression after the ‘in’

• Recall: type annotations are written using colon:
let x : int = … ((x + 3) : int) …

CIS120

let x = 3 + 5 in string_of_int (x * x)

: string: int : int

: string

Scope
Multiple declarations of the same variable or
function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

CIS120

scope of x

scope of y

scope of x
(shadows earlier x)

scope of z

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

scope of total is the rest of the file

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

First, we
simplify

the right-hand
side of the

declaration for
identifier

total.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = x + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

This r.h.s. is
already a

value.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Substitute 1
for x here.

But not
here because
the second x

shadows the first.

Simplifying Let Expressions

CIS120

let total : int =
let x = 1 in
let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Discard the
local let since

it’s been
substituted

away.

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplify the
expression

remaining in
scope.

Simplifying Let Expressions

CIS120

let total : int =

let y = 1 + 1 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Repeat!

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + y + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let y = 2 in
let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = x + 2 in
x + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let x = 1000 in
let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1000 + 2 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + z

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

let z = 1002 in
1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

1000 + 2 + 1002

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int =

1000 + 2 + 1002 ⇒ 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Simplifying Let Expressions

CIS120

let total : int = 2004

• To calculate the value of a let expression:
– first calculate the value of the right hand side
– then substitute the resulting value for the identifier in its scope
– drop the ‘let...in’ part
– simplify what's left

Things (for you) to do…

• Sign up for Piazza if necessary

• Sign up for Codio

• Homework 1: OCaml Finger Exercises
– Practice using OCaml to write simple programs
– Start with first 4 problems

• (needed background on lists coming next week!)

– Start early!

CIS120

