
Programming Languages
and Techniques

(CIS120)

Lecture 4

Lists, Recursion and Tuples

Announcements

• Read Chapters 3 (Lists) and 4 (Tuples)
of the lecture notes

• We will start Chapters 5 & 6 on Monday

• HW01 due Tuesday at midnight

• Poll Everywhere attendance starts Monday

CIS120

• The ‘::’ operator, pronounced “cons”, constructs a
new list from a head element and a shorter list.

• Lists are an example of an inductive datatype.

Review: What is a list?

CIS120

A list is either:
[] the empty list, sometimes called nil

or
v :: tail a head value v, followed by a list of the

remaining elements, the tail

Calculating with Matches
• Consider how to evaluate a match expression:
begin match [1;2;3] with

| [] -> 42
| first::rest -> first + 10

end

Note: [1;2;3] equals 1::(2::(3::[]))

It doesn’t match the pattern [] so the first branch is
skipped, but it does match the pattern
first::rest when first is 1 and
rest is (2::(3::[])).
So, substitute 1 for first in the second branch.

⟼
1 + 10

⟼
11

CIS120

The Inductive Nature of Lists

• What is going on!? The definition of list mentions ‘list’!
• Insight: ‘list’ is inductive:

– The empty list [] is the (only) list of 0 elements
– To construct a list of (1+n) elements, add an element to an existing list

of n elements
– The set of list values contains all and only values constructed this way

• Corresponding computation principle: recursion

A list is either:
[] the empty list, sometimes called nil

or
v :: tail a head value v, followed by a list of the

remaining elements, the tail

CIS120

Recursion

• Example:
length (1::2::3::[]) = 1 + (length (2::3::[]))
length (2::3::[]) = 1 + (length (3::[]))
length (3::[]) = 1 + (length [])
length [] = 0

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller
subcomponents of the input.
– The structure of the computation follows the inductive

structure of the input.

CIS120

Recursion Over Lists

let rec length (l : string list) : int =
begin match l with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

The function calls itself recursively so
the function declaration must be
marked with rec.

Lists are either empty or nonempty.
Pattern matching determines which.

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

CIS120

Calculating with Recursion
length [“a”; “b”]

⟼ (substitute the list for l in the function body)
begin match “a”::“b”::[] with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

⟼ (second case matches with rest = “b”::[])
1 + (length “b”::[])

⟼ (substitute the list for l in the function body)
1 + (begin match “b”::[] with

| [] -> 0
| (x :: rest) -> 1 + length rest
end)

⟼ (second case matches again, with rest = [])
1 + (1 + length [])

⟼ (substitute [] for l in the function body)
…

⟼ 1 + 1 + 0 ⇒ 2

let rec length (l:string list) : int=
begin match l with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

CIS120

More examples…

let rec sum (l : int list) : int =
begin match l with
| [] -> 0
| (x :: rest) -> x + sum rest
end

CIS120

let rec contains (l:string list) (s:string):bool =
begin match l with
| [] -> false
| (x :: rest) -> s = x || contains rest s
end

let rec foo (z:int) (l : int list): bool =
begin match l with
| [] -> true
| (x :: rest) ->
(x > z) && foo z rest

end

CIS120

What best describes the behavior
of the function call (foo 3 l) ?

ANSWER: every element is greater than 3

Structural Recursion Over Lists
Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly.
– this is the base case of the recursion

The branch for hd::rest calculates
(f(hd::rest)) given hd and (f rest).
– this is the inductive case of the recursion

let rec f (l : … list) … : … =
begin match l with
| [] -> … (* BASE CASE *)
| (hd :: rest) ->

… (f rest) …. (* INDUCTIVE CASE *)
end

CIS120

Design Pattern for Recursion

1. Understand the problem
What are the relevant concepts and how do they relate?

2. Formalize the interface
How should the program interact with its environment?

3. Write test cases
• If the main input to the program is an immutable list, make

sure the tests cover both empty and non-empty cases
4. Implement the required behavior

• If the main input to the program is an immutable list, look for
a recursive solution…
• Is there a direct solution for the empty list?
• Suppose someone has given us a partial solution that works for

lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?

CIS120

Tuples and Tuple Patterns

Two Forms of Structured Data
OCaml provides two basic ways of packaging multiple
values together into a single compound value:
• Lists:
– arbitrary-length sequence of values of a single type
– example: a list of email addresses

• Tuples:
– fixed-length sequence of values, possibly of different types
– example: tuple of name, phone #, and email

CIS120

Tuples
• In OCaml, tuples are created by writing a sequence

of expressions, separated by commas, inside parens:

• Tuple types are written using ‘*’
– e.g. my_triple has type:

CIS120

let my_pair = (3, true)
let my_triple = (“Hello”, 5, false)
let my_quadruple = (1, 2, ”three”, false)

string * int * bool

Cartesian Products
• The values of a tuple (a.k.a. product) type are

tuples of elements from each component type.

CIS120

Ocaml notation:
A * B

B = 1 2 3
A =

‘a’ (‘a’, 1) (‘a’, 2) (‘a’, 3)

‘b’ (‘b’, 1) (‘b’, 2) (‘b’, 3)

‘c’ (‘c’, 1) (‘c’, 2) (‘c’, 3)

Pattern Matching on Tuples
• Tuples can be inspected by pattern matching:

• As with lists, tuple patterns follow the syntax of tuple values
and give names to the subcomponents so they can be used on
the right-hand side of the ->

CIS120

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
⇒
“b”

Mixing Tuples and Lists
• Tuples and lists can mix freely:

CIS120

[(1,”a”); (2,”b”); (3,”c”)]
: (int * string) list

([1;2;3], [“a”; “b”; “c”])
: (int list) * (string list)

Nested Patterns
• We’re seen several kinds of simple patterns:

[] matches empty list
x::tl matches nonempty list
(a,b) matches pairs (tuples with 2 elts)
(a,b,c) matches triples (tuples with 3 elts)

• We can build nested patterns out of simple ones:
x :: [] matches lists with 1 element
[x] matches lists with 1 element
x::(y::tl) matches lists of length at least 2
(x::xs, y::ys) matches pairs of non-empty lists

CIS120

Wildcard Pattern
• Another handy simple pattern is the wildcard _

• A wildcard pattern indicates that the value of the
corresponding subcomponent is not used on the
right-hand side of the match case.
– And hence needs no name

_::tl matches a non-empty list, but only names tail
(_,x) matches a pair, but only names the 2nd part

CIS120

Unused Branches
• The branches in a match expression are considered

in order from top to bottom.
• If you have “redundant” matches, then some later

branches might not be reachable.
– OCaml will give you a warning in this case

CIS120

let bad_cases (l : int list) : int =
begin match l with
| [] -> 0
| x::_ -> x
| x::y::tl -> x + y (* unreachable *)
end

This case matches more lists
than that one does.

CIS120

What is the value of this expression?

let l = [1; 2] in

begin match l with
| x :: y :: t -> 1
| x :: [] -> 2
| x :: t -> 3
| [] -> 4

end

Answer: 1

CIS120

let l = [1; 2] in
begin match l with
| x :: y :: t -> 1
| x :: [] -> 2
| x :: t -> 3
| [] -> 4

end
let l = 1 :: 2 :: [] in
begin match l with
| x :: y :: t -> 1
| x :: [] -> 2
| x :: t -> 3
| [] -> 4

end

1

CIS120

What is the value of this expression?

let l = [(2,true); (3,false)] in

begin match l with
| (x,false) :: tl -> 1
| w :: (x,y) :: z -> x
| x -> 4

end

Answer: 3

CIS120

What is the value of this expression?

let l = [(2,true); (3,false)] in

begin match l with
| (_,false) :: _ -> 1
| _ :: (x,_) :: _ -> x
| _ -> 4

end

Answer: 3

Exhaustive Matches
• Pattern matching is exhaustive if there is a pattern

for every possible value
• Example of a non-exhaustive match:

• OCaml will give you a warning and show an example
of what isn’t covered by your cases

CIS120

let sum_two (l : int list) : int =
begin match l with
| x::y::_ -> x+y
end

Exhaustive Matches
• Pattern matching is exhaustive if there is a pattern

for every possible value
• Example of an exhaustive match:

• The wildcard pattern and failwith are useful tools
for ensuring match coverage

CIS120

let sum_two (l : int list) : int =
begin match l with
| x::y::_ -> x+y
| _ -> failwith "not a length 2 list"
end

More List & Tuple Programming

see patterns.ml

Example: zip
• zip takes two lists of the same length and returns a

single list of pairs:
zip [1; 2; 3] [“a”; “b”; “c”] ⇒

[(1,”a”); (2,”b”); (3,”c”)]

CIS120

let rec zip (l1: int list)
(l2: string list) : (int * string) list =

begin match (l1, l2) with
| ([], []) -> []
| (x:: xs, y:: ys) -> (x, y):: (zip xs ys)
| _ -> failwith "zip: unequal length lists"
end

