
Programming Languages
and Techniques

(CIS120)

Lecture 5

Datatypes and Trees

Announcements

• Homework 1 due tomorrow at 11:59pm

• Homework 2 available soon
– due Tuesday, September 17th

• Read Chapters 5 – 7

• Lecture attendance begins today

CIS120

Recap: Lists, Recursion, & Tuples

Structural Recursion Over Lists
Structural recursion builds an answer from smaller components:

The branch for [] calculates the value (f []) directly.
– this is the base case of the recursion

The branch for hd::rest calculates
(f(hd::rest)) given hd and (f rest).
– this is the inductive case of the recursion

let rec f (l : … list) … : … =
begin match l with
| [] -> …
| (hd :: rest) -> … f rest …
end

CIS120

CIS120

What is the type of this expression?

(1, [1], [[1]])

1. int
2. int list
3. int list list
4. (int * int list) list
5. int * (int list) * (int list list)
6. (int * int * int) list
7. none (expression is ill typed)

Answer: 5

CIS120

What is the type of this expression?

[(1,true); (0, false)]

1. int * bool
2. int list * bool list
3. (int * bool) list
4. (int * bool) list list
5. none (expression is ill typed)

Answer: 3

Datatypes and Trees

Datatypes
• Programming languages provide a variety of ways of

creating and manipulating structured data
• We have already seen:
– primitive datatypes (int, string, bool, …)
– lists (int list, string list, string list list, …)
– tuples (int * int, int * string, …)

• Today:
– user-defined datatypes

CIS120

HW 2 Case Study: Evolutionary Trees
• Problem: reconstruct evolutionary trees* from DNA data.

– What are the relevant abstractions?
– How can we use the language features to define them?
– How do the abstractions help shape the program?

CIS120*Interested? Check this out:
Dawkins: The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions
• Nucleotide
– Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

• Helix
– a sequence of nucleotides: e.g. AGTCCGATTACAGAGA…
– genetic code for a particular species (human, gorilla, etc)

• Phylogenetic tree
– Binary tree with helices (species)

at the nodes and leaves

CIS120

Simple User-Defined Datatypes
• OCaml lets programmers define new datatypes

• The constructors are the values of the datatype
– e.g. A is a nucleotide and [A; G; C] is a nucleotide list

CIS120

type nucleotide =
| A
| C
| G
| T

type day =
| Sunday
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday

type name
(must be lowercase)

constructor names (tags)
(must be capitalized)

‘type’ keyword

Pattern Matching Simple Datatypes
• Datatype values can be analyzed by pattern matching:

• One case per constructor
– you will get a warning if you leave out a case or list one twice

• As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

CIS120

let string_of_n (n:nucleotide) : string =
begin match n with
| A -> “adenine”
| C -> “cytosine”
| G -> “guanine”
| T -> “thymine”
end

A Point About Abstraction
• We could represent data like this by using integers:
– Sunday = 0, Monday = 1, Tuesday = 2, etc.

• But:
– Integers support different operations than days do:

Wednesday - Monday = Tuesday (?!)
– There are more integers than days (What day is 17?)

• Confusing integers with days can lead to bugs
– Many “scripting” languages (PHP, Javascript, Perl,

Python,…) violate such abstractions (true == 1 == “1”),
leading to pain and misery…

Most modern languages (Java, C#, C++, Rust, Swift,…)
provide user-defined types for these reasons

CIS120

Type Abbreviations
• OCaml also lets us name types without making new

abstractions:

• i.e. a codon is the same thing a triple of nucleotides
let x : codon = (A,C,C)

• Can make code easier to read & write

CIS120

type helix = nucleotide list
type codon = nucleotide * nucleotide

* nucleotide

type
name definition in terms of existing types

no constructors!

type keyword

Data-Carrying Constructors

• Datatype constructors can also carry values

• Values of type ‘measurement’ include:
Missing
NucCount(A, 3)
CodonCount((A,G,T), 17)

CIS120

type measurement =
| Missing
| NucCount of nucleotide * int
| CodonCount of codon * int

Constructors may take a
tuple of arguments

keyword ‘of’

Pattern Matching Datatypes
• Pattern matching notation combines syntax of tuples

and simple datatype constructors:

• Datatype patterns bind variables (e.g. ‘n’) just like
lists and tuples

CIS120

let get_count (m:measurement) : int =
begin match m with
| Missing -> 0
| NucCount(_, n) -> n
| CodonCount(_, n) -> n
end

CIS120

What is the type of this expression?

(A, “A”)

1. nucleotide
2. nucleotide list
3. helix
4. nucleotide * string
5. string * string
6. none (expression is ill typed)

type nucleotide = | A | C | G | T
type helix = nucleotide list

Answer: 4

type tree =
| Leaf of helix
| Node of tree * helix * tree

Recursive User-defined Datatypes

• Datatype definitions can mention themselves
recursively:

CIS120

recursive occurrences of
datatype being defined

Node carries a
tuple of values

base constructor
(nonrecursive)

• Example values of type tree

let t1 = Leaf [A;G]
let t2 = Node (Leaf [G], [A;T], Leaf [A])
let t3 =
Node (Leaf [T],

[T;T],
Node (Leaf [G;C], [G], Leaf []))

Syntax for User-defined Types

CIS120

type tree =
| Leaf of helix
| Node of tree * helix * tree

Constructors
(note capitalization)

Trees are everywhere

Family trees

CIS120

Organizational charts

CIS120

Filesystem Directory Structure

CIS120

CIS120

Domain Name Hierarchy

edu com gov mil org net

cornell … upenn cisco…yahoo nasa … nsf arpa … navy …

cis seas wharton …

Game trees

CIS120

Natural-Language Parse Trees

CIS120

Binary Trees

A particular form of tree-structured data

Binary Trees

CIS120

3

2

0 1

2

3 1

root node

root’s
right child

root’s
left child

left subtree

leaf node

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

A leaf is a node whose children are both empty.

empty

Trees are Drawn Upside Down

CIS120

0

8

1 3

-1

1

7

root node

leaf node

Another Example Tree

CIS120

0

8

1 3

-1

1

7

Trees need not be balanced
(some branches may be longer than others)

Binary Trees in OCaml

CIS120

type tree =
| Empty
| Node of tree * int * tree

3

1 2

4

let t : tree =
Node (Node (Empty, 1, Empty),
3,
Node (Empty, 2,
Node (Empty, 4, Empty)))

=

Representing trees

CIS120

5

1

0 3

7

9

8

type tree =
| Empty
| Node of tree * int * tree

Empty

Node (Empty, 0, Empty)

Node (Node (Empty, 0, Empty),
1,
Node (Empty, 3, Empty))

More on trees

see tree.ml
treeExamples.ml

Structural Recursion Over Trees
Structural recursion builds an answer from smaller components:

The branch for Empty calculates the value (f Empty) directly.
– this is the base case of the recursion

The branch for Node(l,x,r) calculates
(f(Node(l,x,r)) given x and (f l) and (f r).
– this is the inductive case of the recursion

let rec f (t : tree) … : … =
begin match t with
| Empty -> …
| Node(l,x,r) -> … (f l) … x … (f r) …
end

CIS120

Tree vs. List Recursion

let rec f (t : tree) … : … =
begin match t with
| Empty -> …
| Node(l,x,r) -> … (f l) … (f r) …
end

CIS120

let rec f (l : … list) … : … =
begin match l with
| [] -> …
| (hd :: rest) -> … f rest …
end

Two recursive calls, for left and right sub trees,
versus one for lists.

Trees as Containers
• Like lists, trees aggregate ordered data
• As we did for lists, we can write a function to

determine whether a tree contains a particular
element

CIS120

Searching for Data in a Tree

• This function searches through the tree, looking for n
• In the worst case, it might have to traverse the entire tree

CIS120

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->

x = n
|| contains lt n
|| contains rt n

end

Search during (contains t 8)

CIS120

5

1

0 3

7

9

8 ✓

Searching for Data in a Tree
let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) -> x = n ||

(contains lt n) || (contains rt n)
end

contains (Node(Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty)),
5, Node (Empty, 7, Empty))) 7

5

1

0 3

7 ✓

5 = 7
|| contains (Node(Node (Empty, 0, Empty), 1, Node(Empty, 3, Empty))) 7
|| contains (Node (Empty, 7, Empty)) 7

(1 = 7 || contains (Node (Empty, 0, Empty)) 7
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7

((0 = 7 || contains Empty 7 || contains Empty 7)
|| contains (Node(Empty, 3, Empty)) 7)

|| contains (Node (Empty, 7, Empty)) 7
contains (Node(Empty, 3, Empty)) 7
|| contains (Node (Empty, 7, Empty)) 7
contains (Node (Empty, 7, Empty)) 7

Recursive Tree Traversals

CIS120

Pre-Order
Root – Left – Right

1

2

3 4

5

6

7

In Order
Left – Root – Right

4

2

1 3

5

7

6

Post-Order
Left – Right – Root

7

3

1 2

6

5

4

(* Code for Pre-Order Traversal *)
let rec f (t:tree) : … =
begin match t with
| Empty -> …
| Node(l, x, r) ->
let root = … x … in (* process root *)
let left = f l in (* recursively process left subtree *)
let right = f r in (* recursively process right subtree *)
combine root left right

end

Other traversals
vary the order
in which these
are computed…

0

1

2 87

In what sequence will the
nodes of this tree be visited
by a post-order traversal?

1. [0;1;6;2;7;8]
2. [0;1;2;6;7;8]
3. [2;1;0;7;6;8]
4. [7;8;6;2;1;0]
5. [2;1;7;8;6;0]

CIS120Answer: 5

6

Post-Order
Left – Right – Root

4

2

1 3

5

6

7

What is the result of applying
this function on this tree?

1. []

2. [1;2;3;4;5;6;7]

3. [1;2;3;4;5;7;6]

4. [4;2;1;3;5;6;7]

5. [4]

6. [1;1;1;1;1;1;1]

7. none of the above
Answer: 3

let rec inorder (t:tree) : int list =
begin match t with
| Empty -> []
| Node (left, x, right) ->

inorder left @ (x :: inorder right)
end

CIS120

