Programming Languages and Techniques (CIS120)

Lecture 6

Binary Search Trees

(Lecture notes Chapter 7)

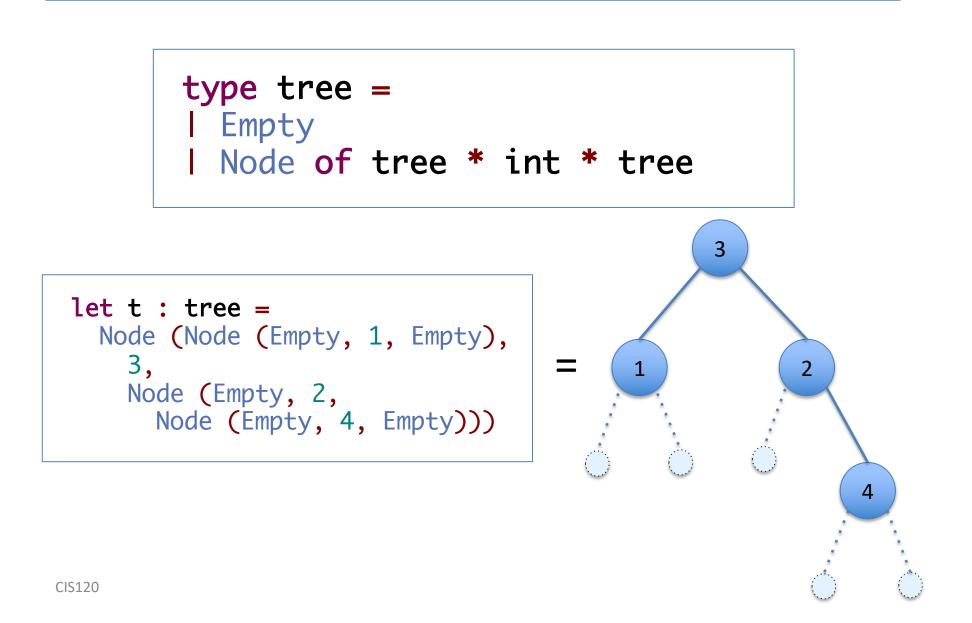
Announcements

- Homework 2: Computing Human Evolution
 - available now
 - due Tuesday, September 17th
- Reading: Chapter 7
- Please Complete the Entry Survey
 - See the link on Piazza (soon to be posted)

Recap: Binary Trees

trees with (at most) two branches

Binary Trees in OCaml



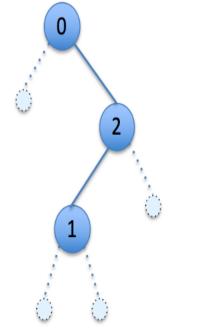
What code constructs the pictured tree?

1. let t : tree = Node (Empty, 2, Node (Node (Empty, 0, Empty), 1, Empty))

2. let t : tree = Node (Empty, 2, Node (Empty, 1, Node (Empty, 0, Empty)))

3. let t : tree = Node (Empty, 0, Node (Empty, 2, Node (Empty, 1, Empty)))

4. let t : tree = Node (Empty, 0, Node (Node (Empty, 1, Empty), 2, Empty))



Which definition constructs the pictured tree?



Tree Programming Examples

examples: height, size, etc. See tree.ml and treeExamples.ml

Trees as Containers

Trees as Containers

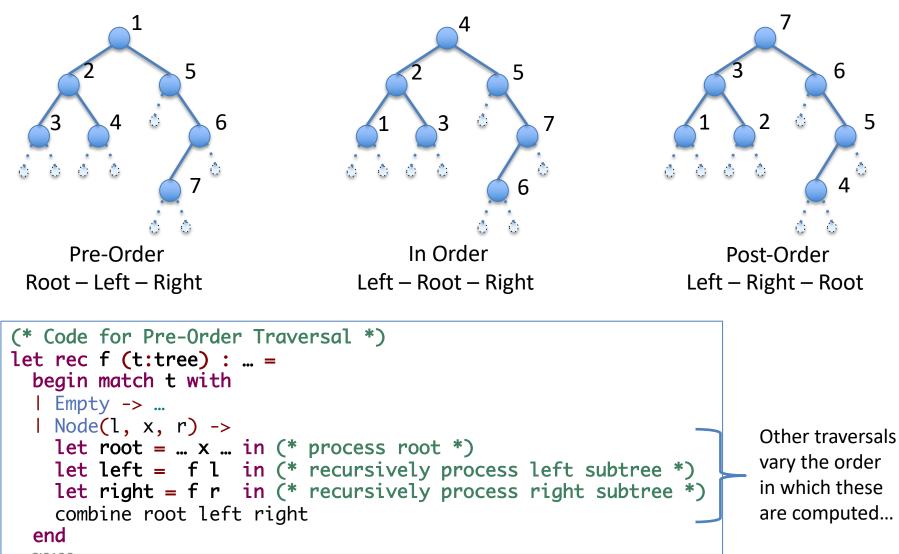
- Like lists, binary trees aggregate data
- As we did for lists, we can write a function to determine whether the data structure *contains* a particular element

```
type tree =
   Empty
   Node of tree * int * tree
```

Searching for Data in a Tree

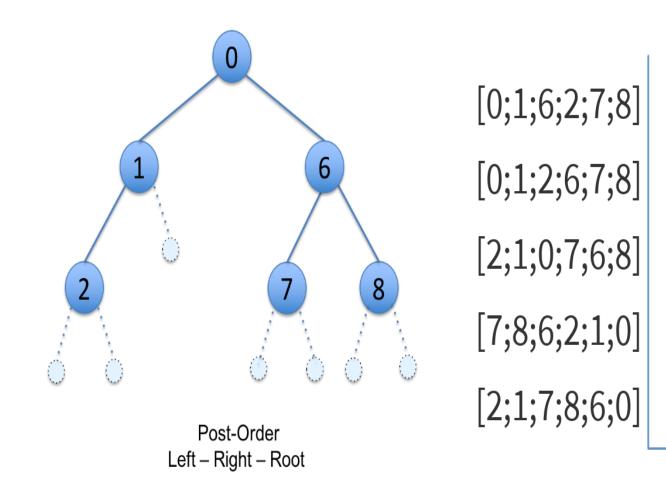
- This function searches through the tree, looking for n
- In the worst case, it might have to traverse the *entire tree*

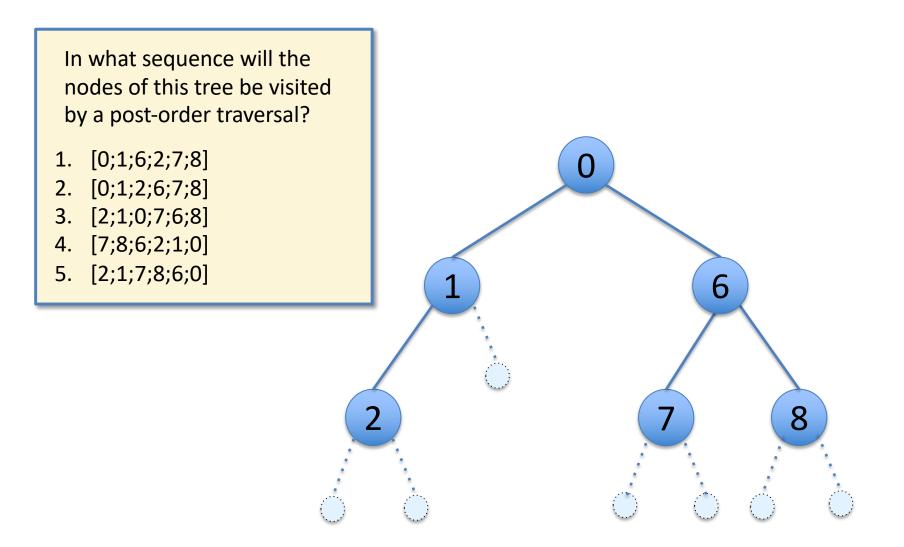
Recursive Tree Traversals



CIS120

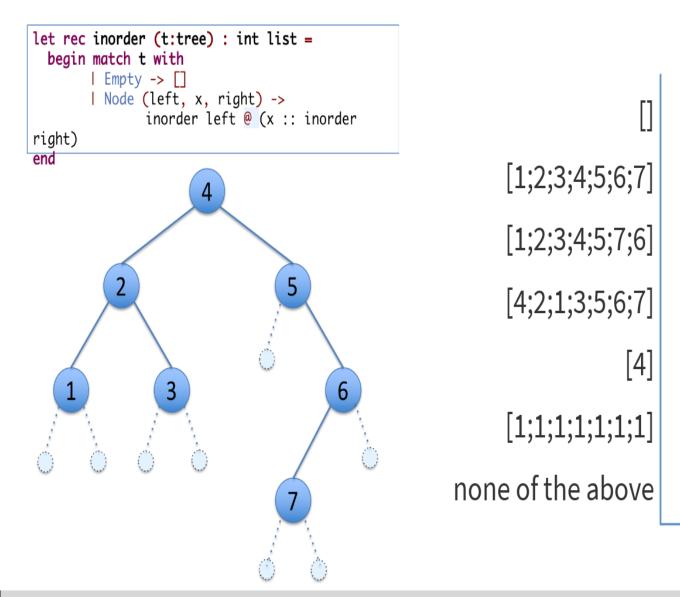
In what sequence will the nodes of this tree be visited by a post-order traversal?

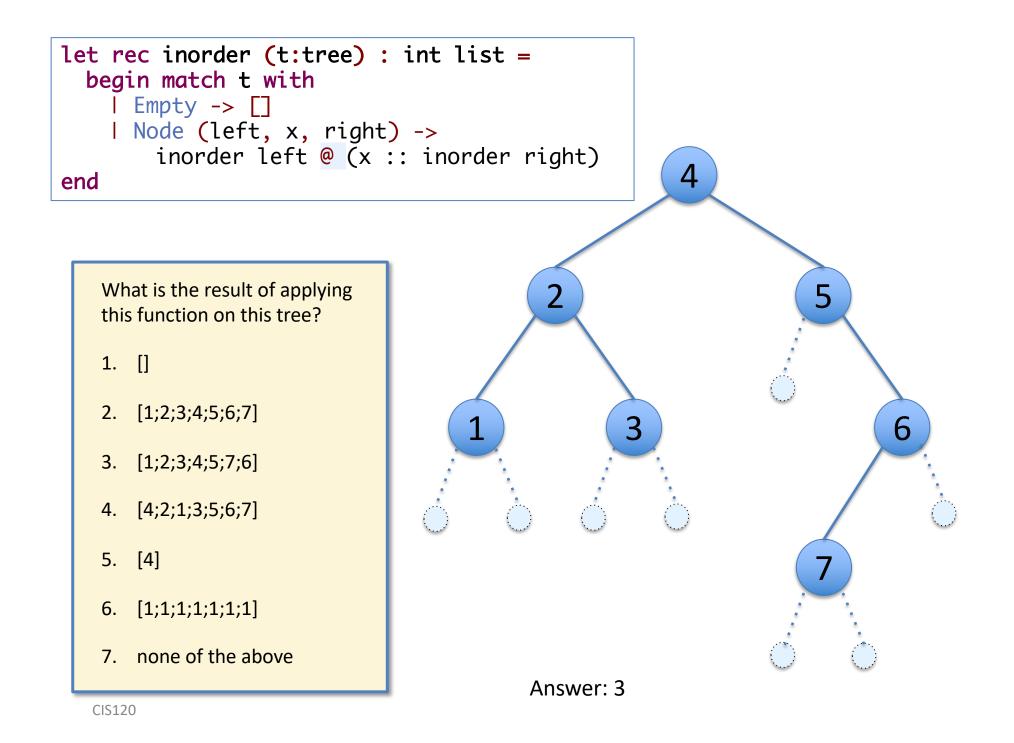




Post-Order Left – Right – Root

What is the result of applying this function on this tree?





Ordered Trees

Big idea: find things faster by searching less

Key Insight:

Ordered data can be searched more quickly

- This is why telephone books are arranged alphabetically
- But requires the ability to focus on (roughly) half of the current data

Binary Search Trees

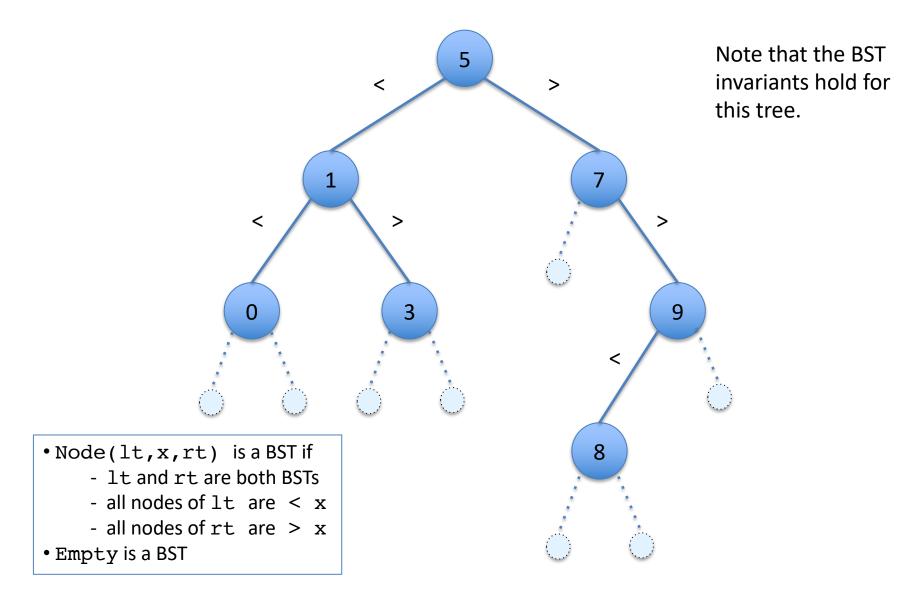
- A binary search tree (BST) is a binary tree with some additional invariants*:
 - Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
 - Empty is a BST

CIS120

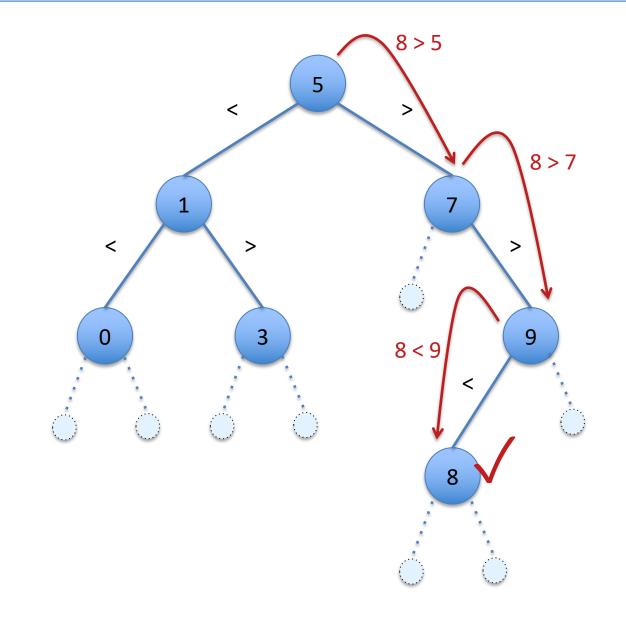
 The BST invariant means that container functions can take time proportional to the *height* instead of the *size* of the tree.

*An data structure *invariant* is a set of constraints about the way that the data is organized. "types" (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree



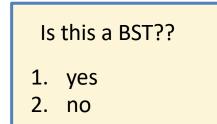
Search in a BST: (lookup t 8)

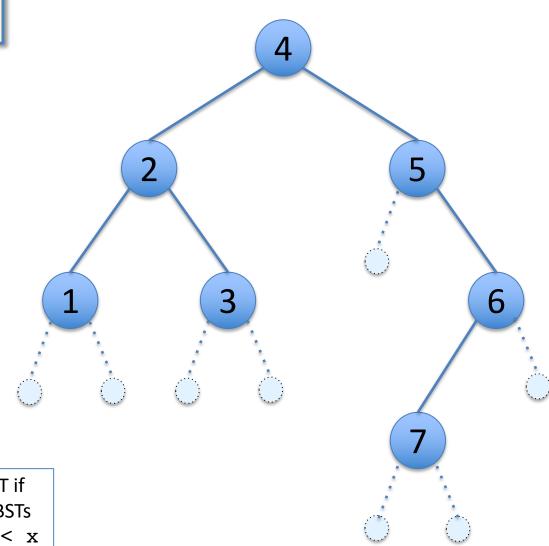


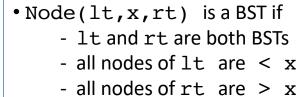
CIS120

Searching a BST

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is *not* a BST!
 - This function *assumes* that the BST invariants hold of t.

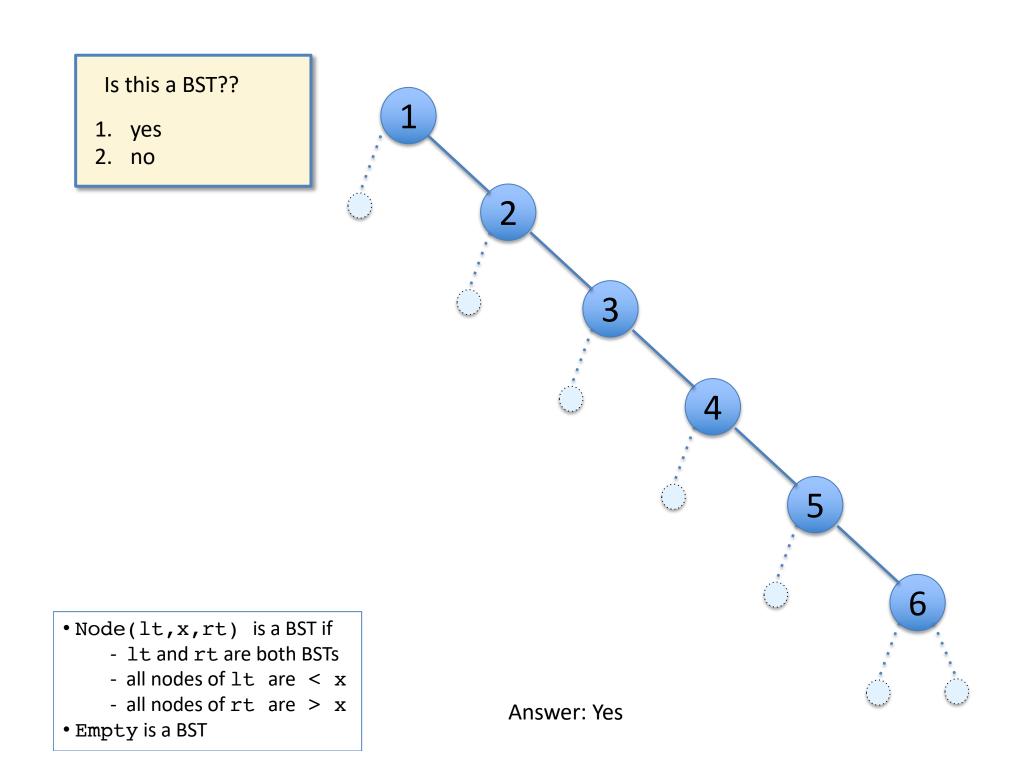


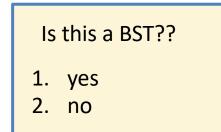


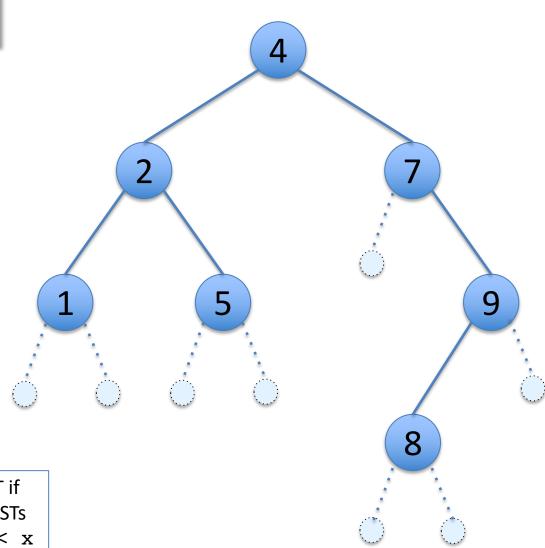


Answer: no, 7 to the left of 6

• Empty is a BST





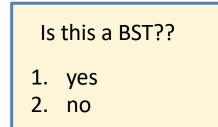


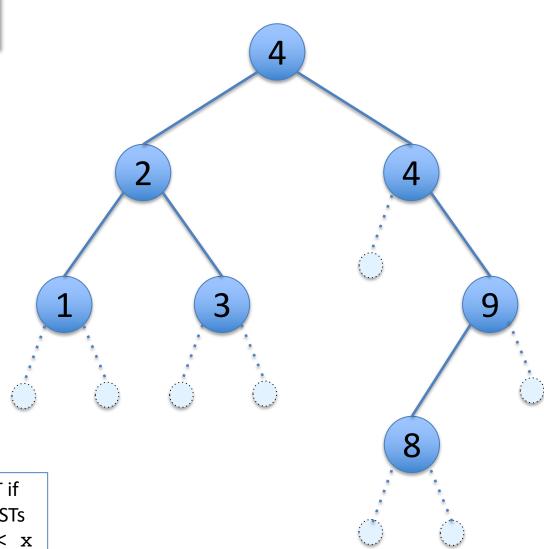
Node(lt,x,rt) is a BST if
lt and rt are both BSTs
all nodes of lt are < x

- all nodes of rt are > x

• Empty is a BST

Answer: no, 5 to the left of 4





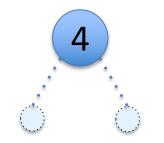
- Node(lt,x,rt) is a BST if
 lt and rt are both BSTs
 all nodes of lt are < x
 - all nodes of rt are > x

• Empty is a BST

Answer: no, 4 to the right of 4

Is this a BST??

- 1. yes
- 2. no

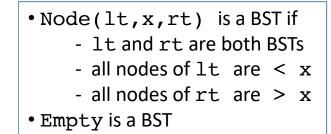


• Node(lt,x,rt) is a BST if
 lt and rt are both BSTs
- all nodes of lt are $< x$
- all nodes of rt are $> x$
• Empty is a BST

Answer: yes

Is this a BST??

- 1. yes
- 2. no



Answer: yes

Manipulating BSTs

Inserting an element

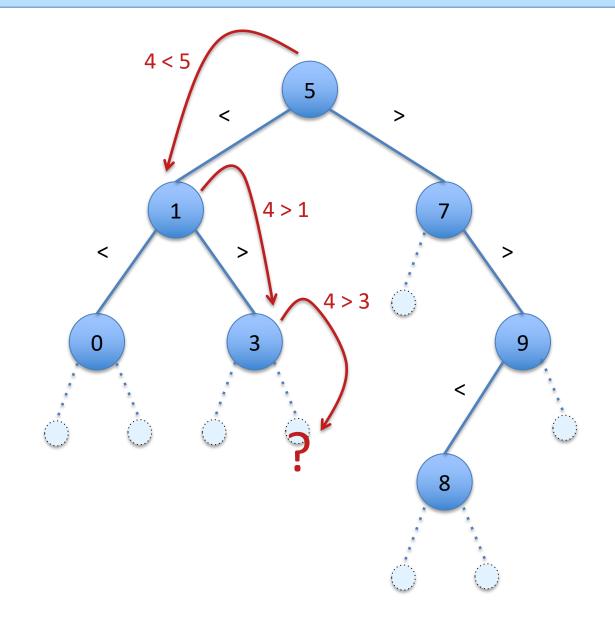
insert : tree -> int -> tree

Inserting into a BST

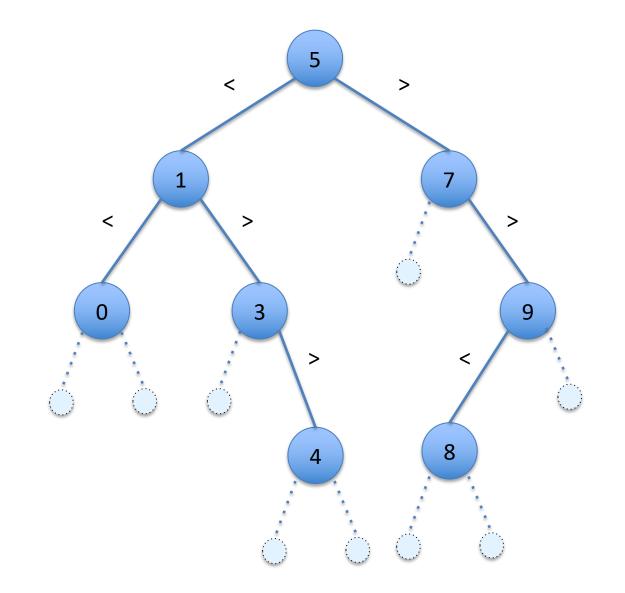
- Suppose we have a BST t and a new element n, and we wish to compute a new BST t' containing all the elements of t together with n
 - Need to make sure the tree we build is really a BST i.e., make sure to put n in the right place!
- This gives us a way to build up a BST containing any set of elements we like:
 - Starting from the Empty BST, apply this function repeatedly to get the BST we want
 - If insertion *preserves* the BST invariants, then any tree we get from it will be a BST *by construction*
 - No need to check!
 - Later: we can also "rebalance" the tree to make lookup efficient (NOT in CIS 120; see CIS 121)

First step: find the right place...

Inserting a new node: (insert t 4)



Inserting a new node: (insert t 4)



Inserting Into a BST

```
(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
    begin match t with
    ! Empty -> Node(Empty,n,Empty)
    Node(lt,x,rt) ->
        if x = n then t
        else if n < x then Node(insert lt n, x, rt)
        else Node(lt, x, insert rt n)
    end</pre>
```

- Note the similarity to searching the tree.
- Assuming that t is a BST, the result is also a BST. (Why?)
- Note that the result is a *new* tree with (possibly) one more Node; the original tree is unchanged
 Critical point!