
Programming Languages
and Techniques

(CIS120)

Lecture 7

Binary Search Trees
(Chapters 7 & 8)

Announcements

• Read Chapters 7 & 8
– Binary Search Trees

• Check out the background survey on Piazza
– Help us improve CIS120!

• HW2 due Tuesday at midnight

• Midterm 1: Friday, September 27th

– During lecture time (but different rooms)
– Announcements about review session, etc., soon

Recap: Ordered Trees

Big idea: find things faster by searching less

CIS120

Key Insight:
Ordered data can be searched more quickly

– This is why telephone books are arranged alphabetically
– Requires the ability to focus on (roughly) half of the current data

Binary Search Trees
• A binary search tree (BST) is a binary tree with some

additional invariants:

• The BST invariant means that container functions can take
time proportional to the height instead of the size of the tree.

CIS120

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

An Example Binary Search Tree

5

1

0 3

7

9

8

<

<

<

>

> >

Note that the BST
invariants hold for
this tree.

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

4

2

1 5

6

8

7

Is this a BST??

1. yes
2. no

Answer: no, 5 to the left of 4

9

1

2

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: Yes

3

4

5

6

4

2

1 3

5

6

7
• Node(lt,x,rt) is a BST if

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: no, 7 to the left of 6

4

2

1 3

4

9

8
• Node(lt,x,rt) is a BST if

- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: no, 4 to the right of 4

4

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: yes

• Node(lt,x,rt) is a BST if
- lt and rt are both BSTs
- all nodes of lt are < x
- all nodes of rt are > x

• Empty is a BST

Is this a BST??

1. yes
2. no

Answer: yes

Searching a BST

• The BST invariants guide the search.
• Note that lookup may return an incorrect answer if the input

is not a BST!
– This function assumes that the BST invariants hold of t.

(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

CIS120

Search in a BST: (lookup t 8)

5

1

0 3

7

9

8

<

<

<

>

> >

8 > 5

8 > 7

8 < 9

✓

CIS120

BST Performance
• lookup takes time proportional to the height of the tree.

– not the size of the tree (as it did with contains for unordered trees)

• In a balanced tree, the lengths of the paths from the root to
each leaf are (almost) the same.
– no leaf is too far from the root
– the height of the BST is minimized
– the height of a balanced binary tree is roughly log2(N) where N is the

number of nodes in the tree

1
2

3
4

5
6

5

1

0 3

7

9

balanced unbalanced

CIS120

UTOP DEMO

see bst.ml

Manipulating BSTs

Inserting an element

insert : tree -> int -> tree

"insert t x" returns a new tree containing x
and all of the elements of t

Inserting into a BST
• Challenge: can we make sure that the result of insert

really is a BST?
– i.e., the new element needs to be in the right place!

• Payoff: we can build a BST containing any set of
elements
– Starting with Empty, apply insert repeatedly
– If insert preserves the BST invariants, then any tree we get

from it will be a BST by construction
• No need to check!

– Later: we can also “rebalance” the tree to make lookup efficient
(NOT in CIS 120; see CIS 121) First step: find the right place…

Inserting a new node: (insert t 4)

5

1

0 3

7

9

8

<

<

<

>

> >

4 < 5

4 > 1

4 > 3

?

Inserting a new node: (insert t 4)

5

1

0 3

7

9

8

<

<

<

>

> >

4

>

Inserting Into a BST

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. (Why?)
• Note that the result is a new tree with (possibly) one more

Node; the original tree is unchanged

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->

if x = n then t
else if n < x then Node(insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

Critical point!

Manipulating BSTs

Deleting an element

delete : tree -> int -> tree

"delete t x" returns a tree containing
all of the elements of t except for x

Deletion – No Children: (delete t 3)

5

1

0 3

7

9

8

<

<

<

>

> >

3 < 5

3 > 1

Deletion – No Children: (delete t 3)

5

1

0

7

9

8

<

<

<

>

>

If the node to be deleted has no
children, simply replace it by
the Empty tree.

Deletion – One Child: (delete t 7)

5

1

0 3

7

9

8

<

<

<

>

> >

7 > 5

Deletion – One Child: (delete t 7)

5

1

0 3

9

8

<

< <

>

>

If the node to be delete has one
child, replace the deleted node
by its child.

Deletion – Two Children: (delete t 5)

5

1

0 3

7

9

8

<

<

<

>

> >

Deletion – Two Children: (delete t 5)

3

1

0

7

9

8

<

<

<

>

>

3

If the node to be delete has two
children, promote the maximum
child of the left tree.

How to Find the Maximum Element?

5

1

0 3

7

9

8

What is the max
element of this
subtree?

How to Find the Maximum Element?

5

1

0 3

7

9

8

Just for fun, how
do we find the
max element of
the whole tree?

Tree Max

• BST invariant guarantees that the maximum-value node is farthest
to the right

• Note that tree_max is a partial* function
– Fails when called with an empty tree

• Fortunately, we never need to call tree_max on an empty tree
– This is a consequence of the BST invariants and the case analysis done by

the delete function

let rec tree_max (t:tree) : int =
begin match t with
| Node(_,x,Empty) -> x
| Node(_,_,rt) -> tree_max rt
| _ -> failwith “tree_max called on Empty”
end

* Partial, in this context, means “not defined for all inputs”.

Code for BST delete

bst.ml

Deleting From a BST
let rec delete (t: tree) (n: int) : tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->
if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> lt
| (Empty, Node _) -> rt
| _ -> let m = tree_max lt in
Node(delete lt m, m, rt)

end
else if n < x then Node(delete lt n, x, rt)

else Node(lt, x, delete rt n)
end

See bst.ml

Subtleties of the Two-Child Case
• Suppose Node(lt,x,rt) is to be deleted and lt and rt

are both themselves nonempty trees.
• Then:

1. There exists a maximum element, m, of lt (Why?)
2. Every element of rt is greater than m (Why?)

• To promote m we replace the deleted node by:
Node(delete lt m, m, rt)

– I.e. we recursively delete m from lt and relabel the root
node m

– The resulting tree satisfies the BST invariants

If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: no (what if the node was in the tree to begin with?)

If we insert a value n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: yes

If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

Answer: no (e.g., what if we delete the item at the root node?)

