Programming Languages and Techniques (CIS120)

Lecture 7

Binary Search Trees

(Chapters 7 & 8)

Announcements

- Read Chapters 7 & 8
 - Binary Search Trees
- Check out the background survey on Piazza

 Help us improve CIS120!
- HW2 due *Tuesday* at midnight
- Midterm 1: Friday, September 27th
 - During lecture time (but different rooms)
 - Announcements about review session, etc., soon

Recap: Ordered Trees

Big idea: find things faster by searching less

Key Insight:

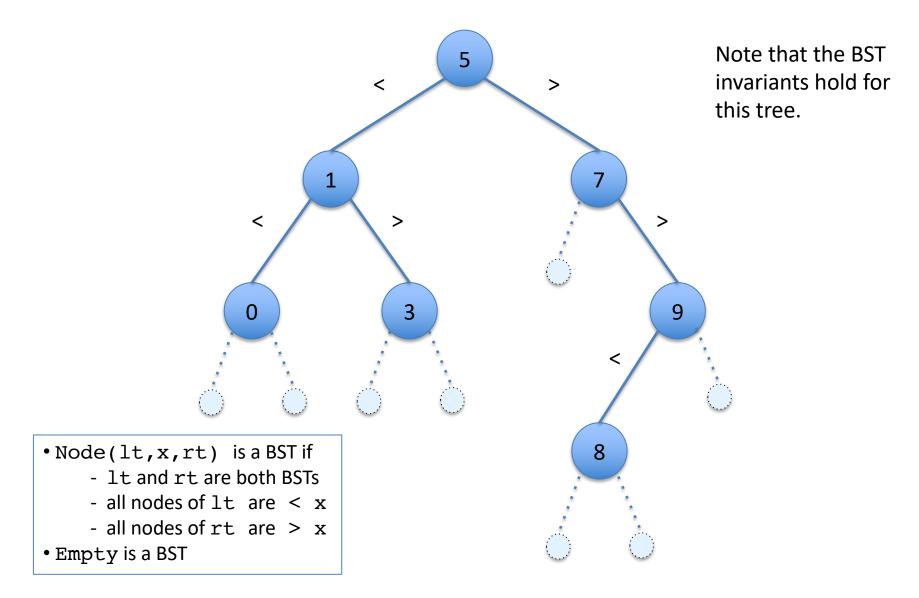
Ordered data can be searched more quickly

- This is why telephone books are arranged alphabetically
- Requires the ability to focus on (roughly) half of the current data

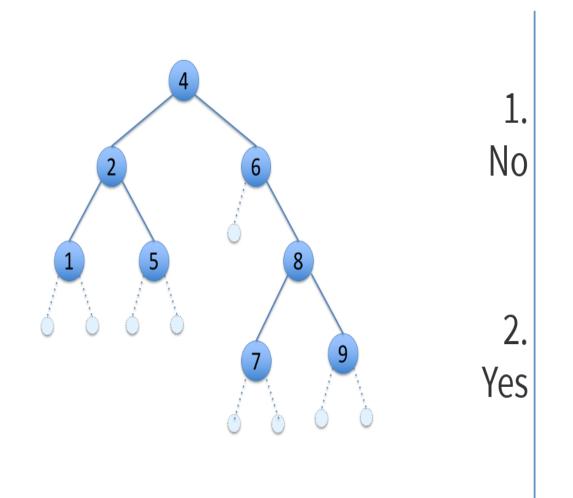
Binary Search Trees

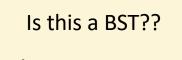
- A *binary search tree* (BST) is a binary tree with some additional *invariants:*
 - Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
 - Empty is a BST
- The BST invariant means that container functions can take time proportional to the **height** instead of the **size** of the tree.

An Example Binary Search Tree

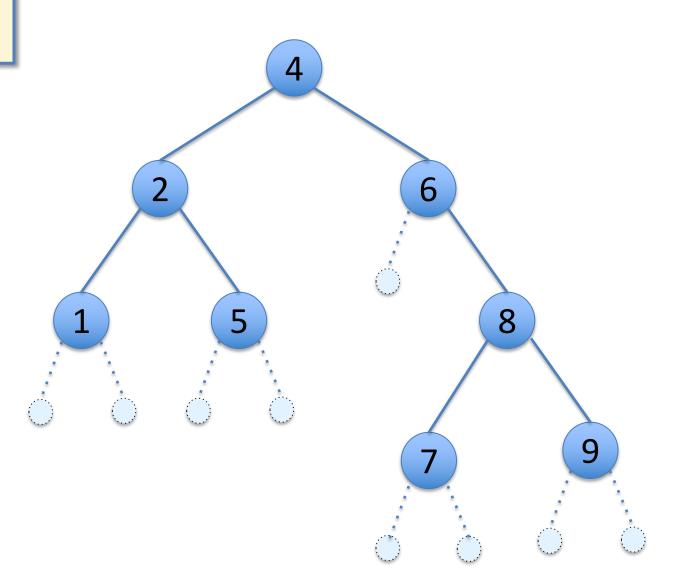


Is this a BST?

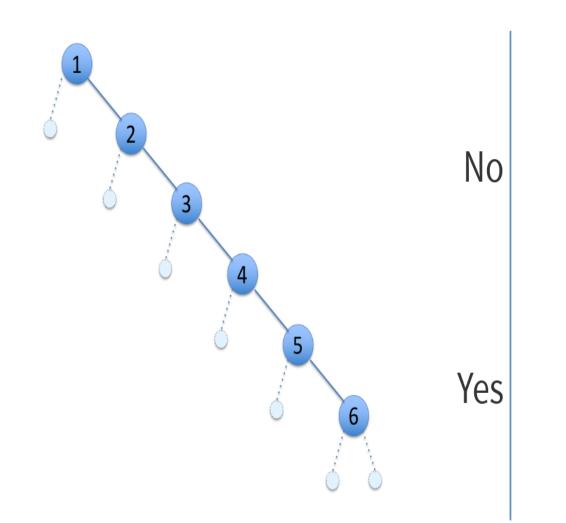


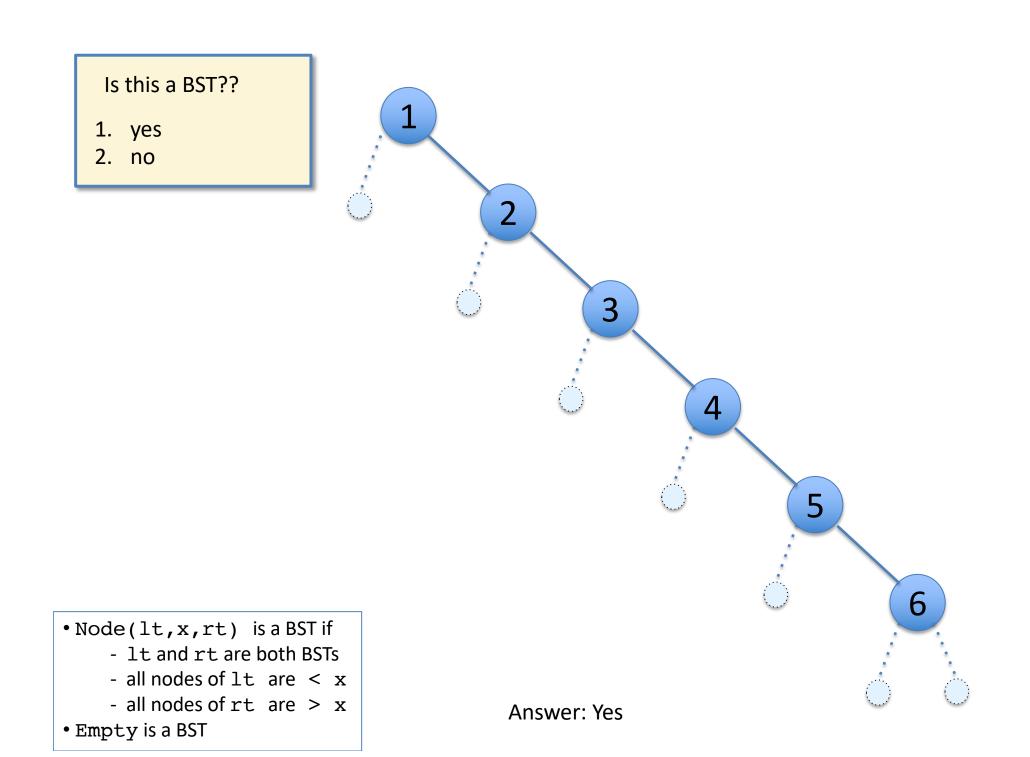


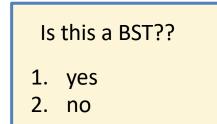
- 1. yes
- 2. no

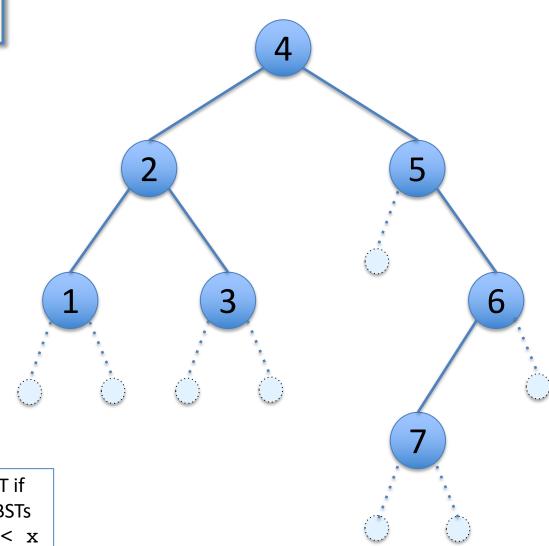


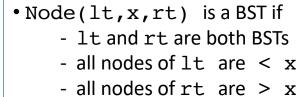
Answer: no, 5 to the left of 4





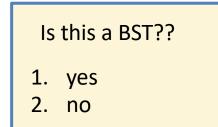


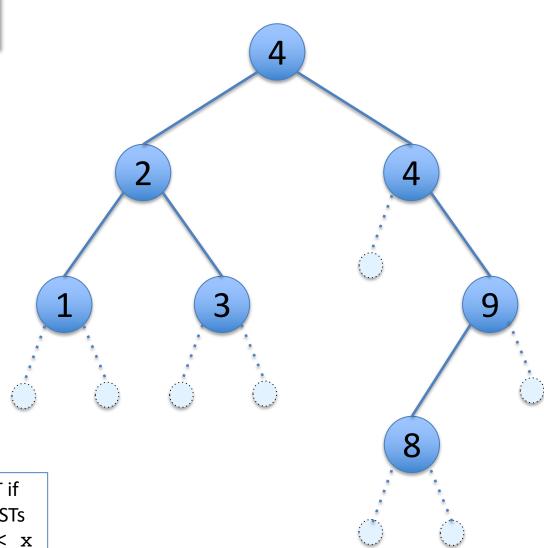




Answer: no, 7 to the left of 6

• Empty is a BST





Node(lt,x,rt) is a BST if
lt and rt are both BSTs
all nodes of lt are < x

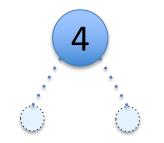
- all nodes of rt are > \mathbf{x}

• Empty is a BST

Answer: no, 4 to the right of 4

Is this a BST??

- 1. yes
- 2. no

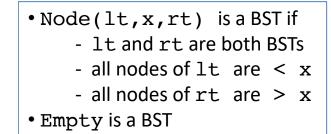


• Node(lt,x,rt) is a BST if
 lt and rt are both BSTs
- all nodes of lt are $< x$
- all nodes of rt are $> x$
• Empty is a BST

Answer: yes

Is this a BST??

- 1. yes
- 2. no

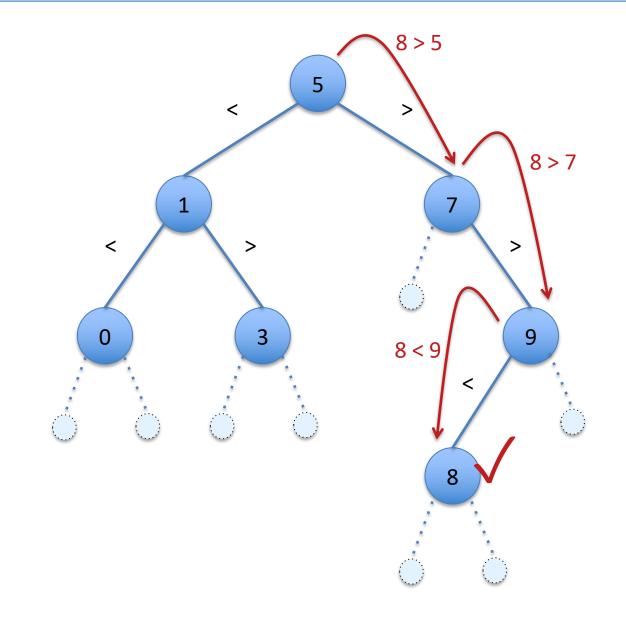


Answer: yes

Searching a BST

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is *not* a BST!
 - This function *assumes* that the BST invariants hold of t.

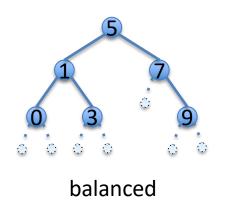
Search in a BST: (lookup t 8)

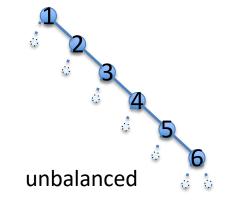


CIS120

BST Performance

- lookup takes time proportional to the *height* of the tree.
 - not the size of the tree (as it did with contains for unordered trees)
- In a *balanced tree*, the lengths of the paths from the root to each leaf are (almost) *the same*.
 - no leaf is too far from the root
 - the height of the BST is minimized
 - the height of a balanced binary tree is roughly log₂(N) where N is the number of nodes in the tree





see bst.ml

UTOP DEMO

Manipulating BSTs

Inserting an element

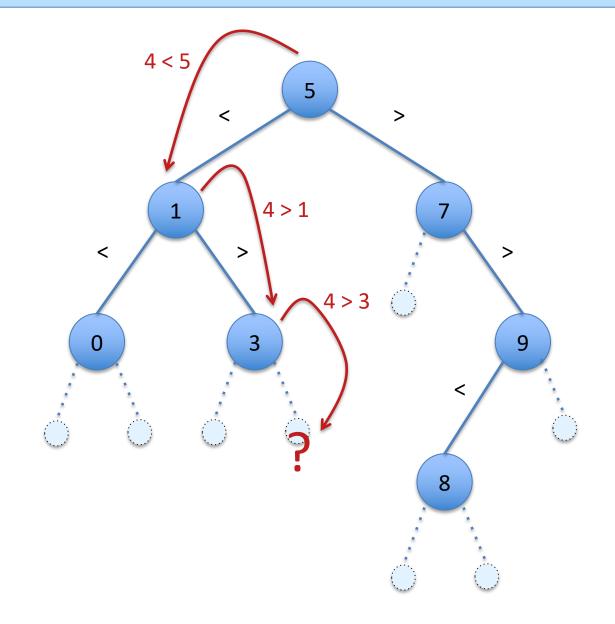
insert : tree -> int -> tree

"insert t x" returns a new tree containing x and all of the elements of t

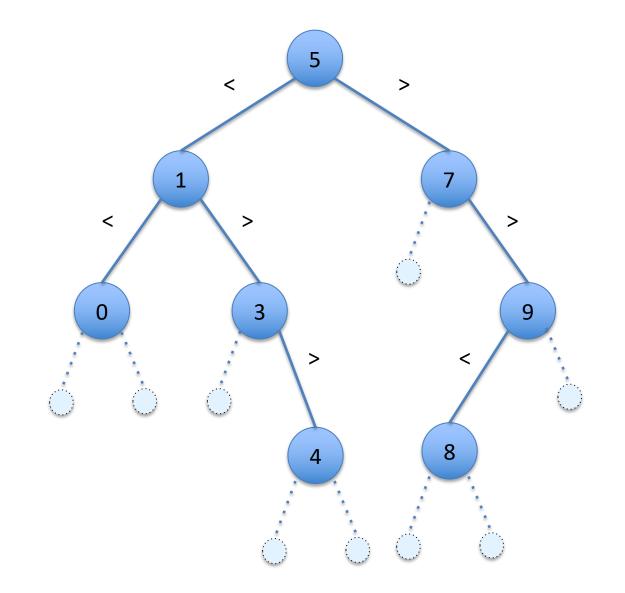
Inserting into a BST

- Challenge: can we make sure that the result of insert really is a BST?
 - i.e., the new element needs to be in the right place!
- Payoff: we can build a BST containing any set of elements
 - Starting with Empty, apply insert repeatedly
 - If insert *preserves* the BST invariants, then any tree we get from it will be a BST *by construction*
 - No need to check!
 - Later: we can also "rebalance" the tree to make lookup efficient (NOT in CIS 120; see CIS 121)
 First step: find the right place...

Inserting a new node: (insert t 4)



Inserting a new node: (insert t 4)



Inserting Into a BST

- Note the similarity to searching the tree.
- Assuming that t is a BST, the result is also a BST. (Why?)
- Note that the result is a *new* tree with (possibly) one more Node; the original tree is unchanged
 Critical point!

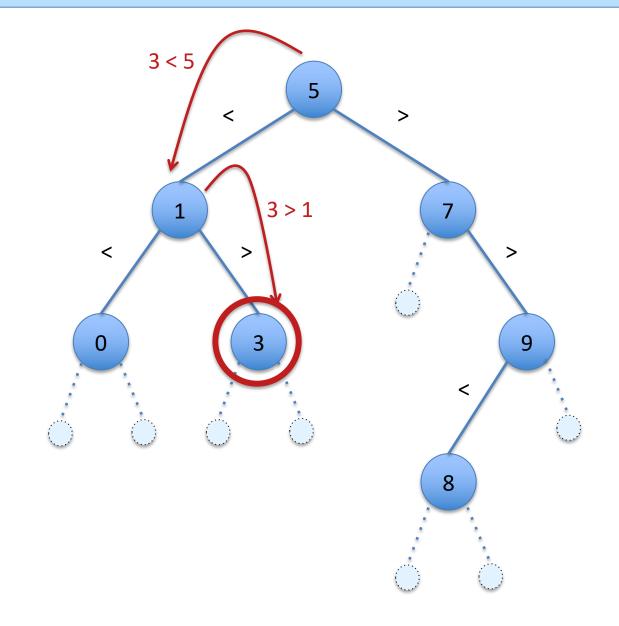
Manipulating BSTs

Deleting an element

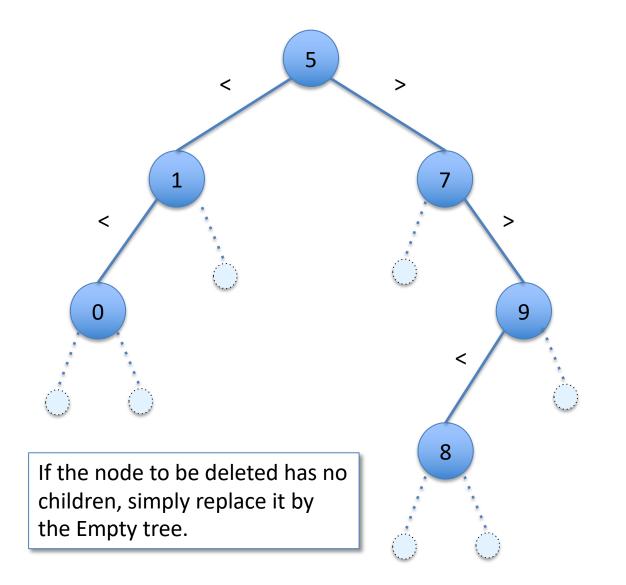
delete : tree -> int -> tree

"delete t x" returns a tree containing all of the elements of t except for x

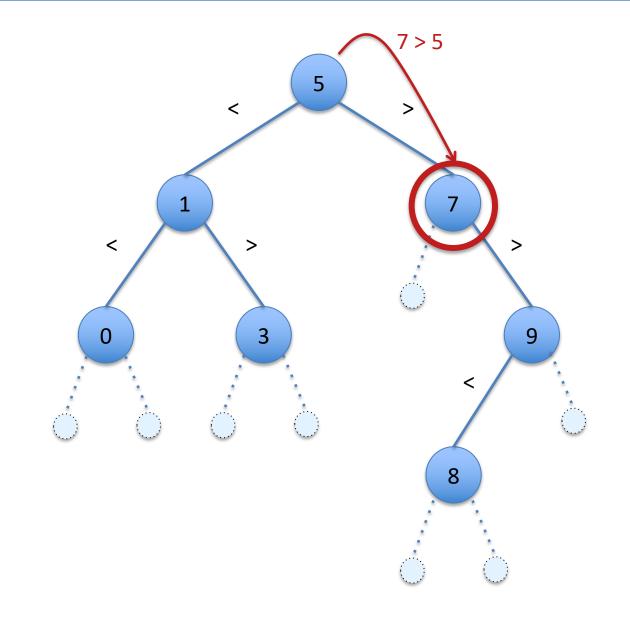
Deletion – No Children: (delete t 3)



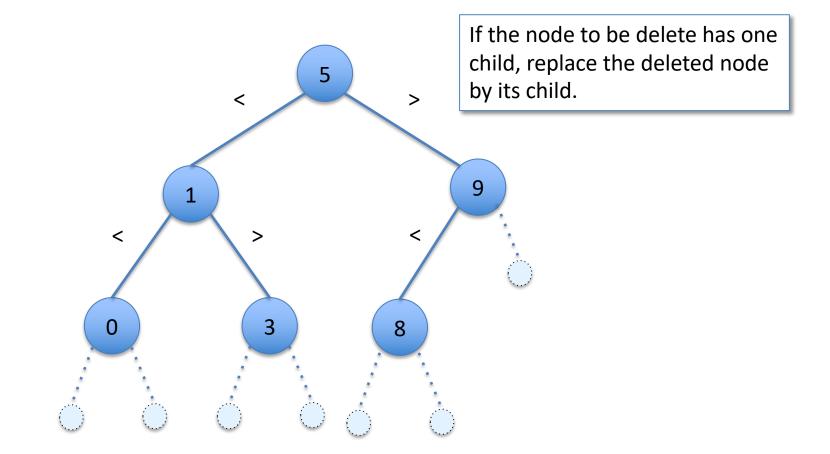
Deletion – No Children: (delete t 3)



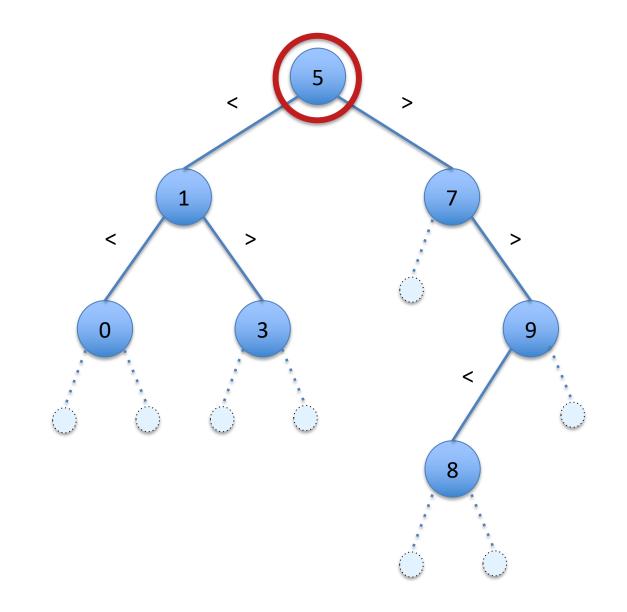
Deletion – One Child: (delete t 7)



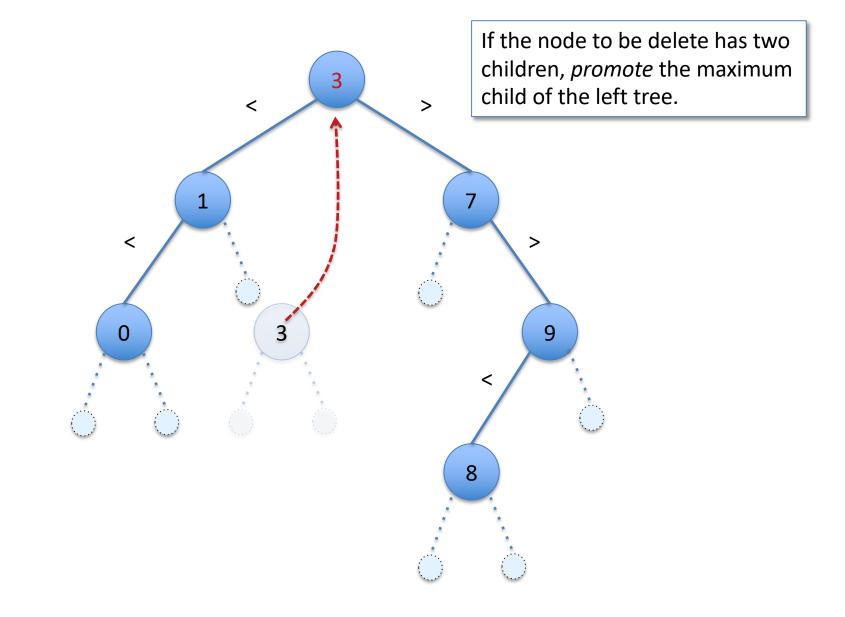
Deletion – One Child: (delete t 7)



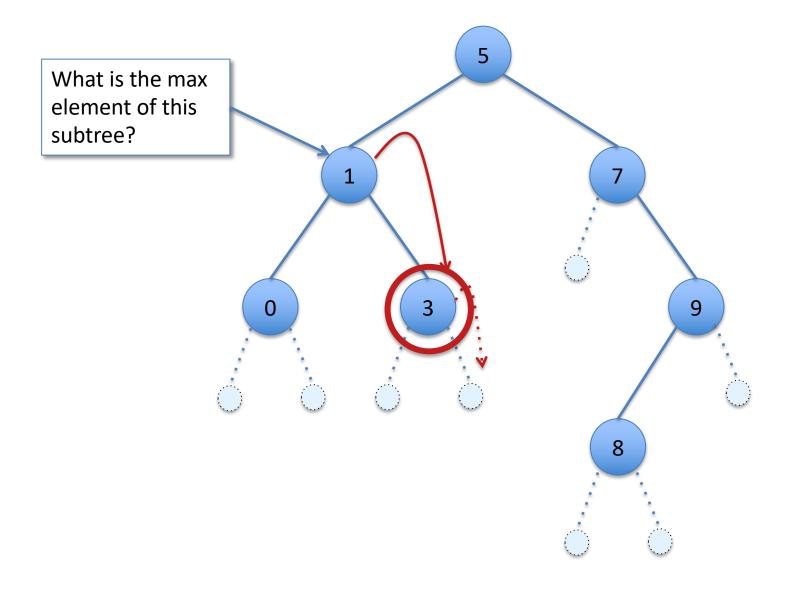
Deletion – Two Children: (delete t 5)



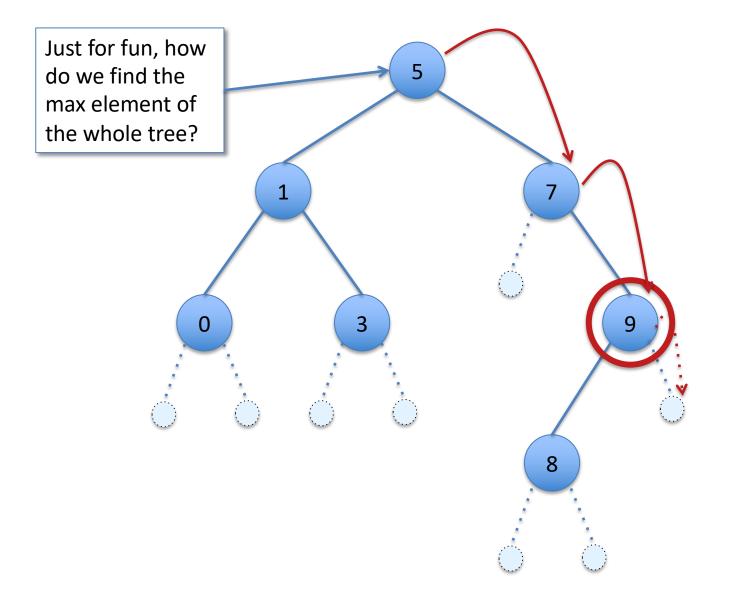
Deletion – Two Children: (delete t 5)



How to Find the Maximum Element?



How to Find the Maximum Element?



Tree Max

```
let rec tree_max (t:tree) : int =
    begin match t with
    l Node(_,x,Empty) -> x
    l Node(_,_,rt) -> tree_max rt
    l _ -> failwith "tree_max called on Empty"
    end
```

- BST invariant guarantees that the maximum-value node is farthest to the right
- Note that tree_max is a *partial** function
 - Fails when called with an empty tree
- Fortunately, we never need to call tree_max on an empty tree
 - This is a consequence of the BST invariants and the case analysis done by the delete function

Code for BST delete

bst.ml

Deleting From a BST

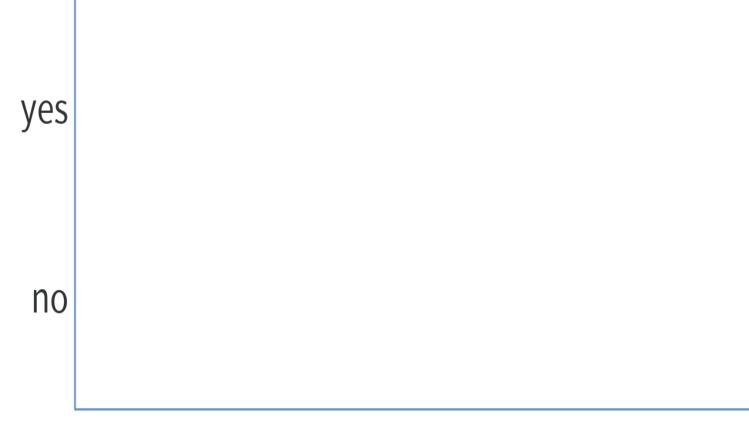
```
let rec delete (t: tree) (n: int) : tree =
  begin match t with
  I Empty -> Empty
  | Node(lt, x, rt) ->
   if x = n then
      begin match (lt, rt) with
      (Empty, Empty) -> Empty
      I (Node _, Empty) -> lt
      (Empty, Node _) -> rt
      | _ -> let m = tree_max lt in
        Node(delete lt m, m, rt)
    end
    else if n < x then Node(delete lt n, x, rt)
  else Node(lt, x, delete rt n)
end
```

See bst.ml

Subtleties of the Two-Child Case

- Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.
- Then:
 - 1. There exists a maximum element, m, of lt (Why?)
 - 2. Every element of rt is greater than m (Why?)
- To promote m we replace the deleted node by: Node(delete lt m, m, rt)
 - I.e. we recursively delete m from lt and relabel the root node m
 - The resulting tree satisfies the BST invariants

If we insert a label n into a BST and then immediately delete n, do we always get back a tree of exactly the same shape?



Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

If we insert a label n into a BST and then immediately delete n, do we always get back a tree of exactly the same shape?

1. yes 2. no

Answer: no (what if the node was in the tree to begin with?)

If we insert a value n into a BST that *does not* already contain n and then immediately delete n, do we always get back a tree of exactly the same shape?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

If we insert a value n into a BST *that does not already contain n* and then immediately delete n, do we always get back a tree of exactly the same shape?

1. yes 2. no

If we delete n from a BST (containing n) and then immediately insert n again, do we always get back a tree of exactly the same shape?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

If we delete n from a BST (containing n) and then immediately insert n again, do we always get back a tree of exactly the same shape?

1. yes 2. no

Answer: no (e.g., what if we delete the item at the root node?)