Programming Languages
and Techniques
(C1S120)

Lecture /

Binary Search Trees
(Chapters 7 & 8)




Announcements

Read Chapters 7 & 8
— Binary Search Trees

Check out the background survey on Piazza
— Help us improve CIS120!

HW?2 due Tuesday at midnight

Midterm 1: Friday, September 27t

— During lecture time (but different rooms)
— Announcements about review session, etc., soon




Big idea: find things faster by searching less



Key Insight:

Ordered data can be searched more quickly

— This is why telephone books are arranged alphabetically
— Requires the ability to focus on (roughly) half of the current data

CIS120



Binary Search Trees

 Abinary search tree (BST) is a binary tree with some
additional invariants:

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty isaBST

 The BST invariant means that container functions can take
time proportional to the height instead of the size of the tree.

CIS120




An Example Binary Search Tree

Note that the BST
invariants hold for
this tree.

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty is a BST




s this a BST?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Is this a BST??

1. yes
2. no

Answer: no, 5 to the left of 4



s this a BST?

No

Yes

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty is a BST

Answer: Yes




Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs - -
- allnodes of 1t are < x (- o/
- allnodesof rt are > x
« Empty is a BST Answer: no, 7 to the left of 6




Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs - -
- allnodesof 1t are < x o’ o
- allnodesof rt are > x
« Empty is a BST Answer: no, 4 to the right of 4




Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

* Empty is a BST Answer: yes




Is this a BST??

1. yes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

* Empty is a BST Answer: yes




Searching a BST

(* Assumes that t 1s a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
1f X = n then true
else if n < x then lookup 1t n

else lookup rt n
end

 The BST invariants guide the search.

* Note that lookup may return an incorrect answer if the input
is not a BST!

— This function assumes that the BST invariants hold of t.

CIS120




Search in a BST: (lookup t 8)

CIS120

8>5




BST Performance

« lookup takes time proportional to the height of the tree.
— not the size of the tree (as it did with contains for unordered trees)

* Inabalanced tree, the lengths of the paths from the root to
each leaf are (almost) the same.
— no leaf is too far from the root
— the height of the BST is minimized

— the height of a balanced binary tree is roughly log,(N) where N is the
number of nodes in the tree

unbalanced

balanced

CIS120



see bst.ml




Inserting an element

insert : tree -> int -> tree

"insert t x" returns a new tree containing x
and all of the elements of t



Inserting into a BST

* Challenge: can we make sure that the result of insert
really is a BST?

— i.e., the new element needs to be in the right place!

e Payoff: we can build a BST containing any set of
elements

— Starting with Empty, apply insert repeatedly

— If insert preserves the BST invariants, then any tree we get
from it will be a BST by construction
* No need to check!

— Later: we can also “rebalance” the tree to make lookup efficient

(NOT in CIS 120; see CIS 121) First step: find the right place...




Inserting a new node: (1nsert t 4)




Inserting a new node: (1nsert t 4)




Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f X = n then t
else if n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

Note the similarity to searching the tree.
Assuming that t is a BST, the result is also a BST. (Why?)

Note that the result is a new tree with (possibly) one more

Node; the original tree is unchanged .
Critical point




Deleting an element

delete : tree -> int -> tree

"delete t x" returns a tree containing
all of the elements of t except for x



Deletion — No Children: (delete t 3)

3<5




Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.




Deletion — One Child: (delete t 7)




Deletion — One Child: (delete t 7)

If the node to be delete has one

child, replace the deleted node
by its child.




Deletion — Two Children: (delete t 5)




Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.




How to Find the Maximum Element?

What is the max
element of this
subtree?




How to Find the Maximum Element?

Just for fun, how
do we find the
max element of
the whole tree?




Tree Max

let rec tree_max (t:tree) : 1int =
begin match t with
| Node(_,x,Empty) -> x
| Node(_,_,rt) -> tree_max rt
| _ -> failwith “tree_max called on Empty?”
end

BST invariant guarantees that the maximum-value node is farthest
to the right

Note that tree_max s a partial* function
— Fails when called with an empty tree

Fortunately, we never need to call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis done by
the delete function

* Partial, in this context, means “not defined for all inputs”.



bst.ml



Deleting From a BST

let rec delete (t: tree) (n: int) : tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->
1f X = n then
begin match (1t, rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> 1t
| (Empty, Node _) -> rt
| _ -> let m = tree_max 1t in
Node(delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
glse Node(lt, x, delete rt n)
en

See bst.ml|




Subtleties of the Two-Child Case

* Suppose Node(lt,x,rt) is to be deleted and It and rt
are both themselves nonempty trees.

* Then:
1. There exists a maximum element, m, of It (Why?)
2. Every element of rt is greater than m (Why?)

* To promote m we replace the deleted node by:
Node(delete It m, m, rt)

— l.e. we recursively delete m from It and relabel the root
node m

— The resulting tree satisfies the BST invariants




If we insert a label n into a BST and then immediately delete
n, do we always get back a tree of exactly the same shape?

yes

no

. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .



If we insert a label n into a BST and then

immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. nNO

Answer: no (what if the node was in the tree to begin with?)



If we insert a value n into a BST that *does not* already
contain n and then immediately delete n, do we always get
back a tree of exactly the same shape?

yes

no

. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .



If we insert a value n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. nNO

Answer: yes




If we delete n from a BST (containing n) and then
immediately insert n again, do we always get back a tree of
exactly the same shape?

yes

no

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



If we delete n from a BST (containing n) and

then immediately insert n again, do we
always get back a tree of exactly the same

shape?

1. yes
2. nNO

Answer: no (e.g., what if we delete the item at the root node?)



