
Programming Languages
and Techniques

(CIS120)

Lecture 8

Generics & First-class functions
Chapters 8 and 9

Announcements

• Homework 2
– Due tomorrow night at 11:59pm

• Homework 3 available soon
– Practice with BSTs, generic functions, first-class functions and abstract

types
– Start early!

• Reading: Chapters 8, 9, and 10 of the lecture notes

• Midterm 1: Friday, September 27th

– During lecture time (but different rooms)
– Announcements about review session, etc., soon

CIS120

Deleting From a BST
let rec delete (t: tree) (n: int) : tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->
if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> lt
| (Empty, Node _) -> rt
| _ -> let m = tree_max lt in
Node(delete lt m, m, rt)

end
else if n < x then Node(delete lt n, x, rt)

else Node(lt, x, delete rt n)
end

See bst.ml

Subtleties of the Two-Child Case
• Suppose Node(lt,x,rt) is to be deleted and lt and rt

are both themselves nonempty trees.
• Then:

1. There exists a maximum element, m, of lt (Why?)
2. Every element of rt is greater than m (Why?)

• To promote m we replace the deleted node by:
Node(delete lt m, m, rt)

– I.e. we recursively delete m from lt and relabel the root
node m

– The resulting tree satisfies the BST invariants

If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: no (what if the node was in the tree to begin with?)

If we insert a value n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: yes

If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

Answer: no (e.g., what if we delete the item at the root node?)

Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing... Do we
have to do it all again if we want to use BSTs containing

strings, and again for characters, and again for floats, and…?
or

How not to repeat yourself, Part I.

Structurally Identical Functions
• Observe: many functions on lists, trees, and other datatypes

don’t depend on the contents, only on the structure.
• Compare:

CIS120

let rec length (l: int list) : int =
begin match l with
| [] -> 0
| _::tl -> 1 + length tl
end

let rec length (l: string list) : int =
begin match l with
| [] -> 0
| _::tl -> 1 + length tl
end

The functions are
identical, except
for the type
annotation.

• OCaml allows defining functions with generic types

• Notation: 'a is a type variable, indicating that the function
length can be used on a t list for any type t.

• Examples:
– length [1;2;3] use length on an int list
– length [“a”;”b”;”c”] use length on a string list

• Idea: OCaml fills in 'awhenever length is used

let rec length (l:'a list) : int =
begin match l with
| [] -> 0
| _::tl -> 1 + (length tl)
end

Notation for Generic Types

CIS120

Generic List Append

CIS120

let rec append (l1:'a list) (l2:'a list) : 'a list =
begin match l1 with
| [] -> l2
| h::tl -> h::(append tl l2)
end

Note that the two input
lists must have the same
type of elements.

The return type is the
same as the inputs.

Pattern matching works over generic types!

In the body of the branch:
h has type 'a
tl has type 'a list

let rec zip (l1:int list) (l2:string list)
: (int*string) list =

begin match (l1,l2) with
| (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
| _ -> []
end

Zip function

zip [1;2;3] ["a";"b";"c"]
⟼ [(1,"a"); (2,"b"); (3,"c")]

• Does it matter what type of lists these are?

CIS120

Generic Zip

• Distinct type variables can be instantiated differently:

zip [1;2;3] [“a”;”b”;”c”]
• Here, 'a is instantiated to int, 'b to string
• Result is

[(1,“a”);(2,“b”);(3,“c”)]
of type (int * string) list

CIS120

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list =
begin match (l1,l2) with
| (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
| _ -> []
end

Functions can operate
over multiple generic
types.

Intuition: OCaml tracks
instantiations of type variables
('a and 'b) and makes sure they
are used consistently

• Recall our integer tree type:

• We can define a generic version by adding a type parameter,
like this:

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

User-Defined Generic Datatypes

CIS120

type tree =
| Empty
| Node of tree * int * tree

Parameter 'a
used here

Note that the recursive
uses of tree also
mention 'a

• BST operations can be generic too; the only change is to the
type annotation

User-Defined Generic Datatypes

CIS120

Equality and comparison are generic — they work for any
type of data.

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : 'a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->

if x = n then t
else if n < x then Node(insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

CIS120

Does the following function typecheck?

1. yes
2. no

let f (l : 'a list) : 'b list =
begin match l with
| [] -> true::l
| _::rest -> 1::l
end

Answer: no: even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

CIS120

Does the following code typecheck?

1. yes
2. no

let f (x : 'a) : 'a =
x + 1

;; print_endline (f “hello”)

Answer: no, the type annotations and uses of f aren’t consistent.

However it is a bit subtle: without the use (f "hello") the code would be correct –
so long as all uses of f provide only 'int' the code is consistent! Despite the
"generic" type annotation, f really has type int -> int.

First-class Functions

Higher-order Programs
or

How not to repeat yourself, Part II.

First-class Functions
• You can pass a function as an argument to another function:

• You can return a function as the result of another function.

CIS120

let twice (f:int->int) (x:int) : int =
f (f x)

let add_one (z:int) : int = z + 1
let add_two (z:int) : int = z + 2
let y = twice add_one 3
let w = twice add_two 3

function type: argument of type
int and result of type int

Argument is an expression
that produces a function

The function add_one is passed as
an argument to twice!

let make_incr (n:int) : int->int =
let helper (x:int) : int =

n + x
in
helper

let y = twice (make_incr 1) 3

• You can store functions in data structures

Functions as Data

CIS120

let func_list1 : (int -> int) list =
[make_incr 1; make_incr 2; make_incr 3]

let add_one (x:int) : int = x+1
let add_two (x:int) : int = x+2
let add_three (x:int) : int = x+3

let func_list : (int -> int) list =
[add_one; add_two; add_three]

A list of functions

A list of expressions that produce functions

Simplifying First-Class Functions

twice add_one 3
⟼ add_one (add_one 3) substitute add_one for f, 3 for x

⟼ add_one (3 + 1) substitute 3 for z in add_one

⟼ add_one 4 3+1⇒4

⟼ 4 + 1 substitute 4 for z in add_one

⟼ 5 4+1⇒5

CIS120

let twice (f:int->int) (x:int) : int =
f (f x)

let add_one (z:int) : int = z + 1

Simplifying First-Class Functions

make_incr 3
substitute 3 for n

⟼ let helper (x:int) = 3 + x in helper
⟼ ???

CIS120

let make_incr (n:int) : int->int =
let helper (x:int) : int = n + x in
helper

Simplifying First-Class Functions

make_incr 3
substitute 3 for n

⟼ let helper (x:int) = 3 + x in helper
⟼ fun (x:int) -> 3 + x

CIS120

Anonymous function value

keyword “fun”

“->” after arguments
no return type annotation

let make_incr (n:int) : int->int =
let helper (x:int) : int = n + x in
helper

Named function values

CIS120

let add_one (x:int) : int = x+1

create a function valuedefine a name for
the value

A standard function definition…

The two definitions have the same type and behave exactly the same.
(The first is actually just an abbreviation for the second.)

let add_one : int->int = fun (x:int) -> x+1

really has two parts:

Anonymous functions

CIS120

let add_one (z:int) : int = z + 1
let add_two (z:int) : int = z + 2
let y = twice add_one 3
let w = twice add_two 3

let y = twice (fun (z:int) -> z+1) 3
let w = twice (fun (z:int) -> z+2) 3

an expression that is a
function value

Function Types
• Functions have types that look like this:

• Examples:

tin -> tout

int -> int

int -> bool * int

int -> int -> int int input

(int -> int) -> int function input
CIS120

Function Types
• Functions have types that look like this:

• Examples:

int -> int

int -> (bool * int)

int -> (int -> int) int input

(int -> int) -> int function input

Parentheses matter!

int -> int -> int is equivalent to
int -> (int -> int) but not to
(int -> int) -> int

CIS120

tin -> tout

Function Types
Hang on… did we just say that

and

mean the same thing??

int -> int -> int

CIS120

int -> (int -> int)

Yes!

Multiple Arguments

CIS120

let sum (x : int) (y:int) : int = x + y

let sum = fun (x:int) -> fun (y:int) -> x + y

let sum : int -> int -> int

create a function valuedefine a variable with
that value

We can decompose a standard function definition

into parts

The two definitions have the same type and behave exactly the same

that returns a function value

Partial Application

sum 3
⟼ (fun (x:int) -> fun (y:int) -> x + y) 3 definition
⟼ fun (y:int) -> 3 + y substitute 3 for x

CIS120

let sum (x : int) (y:int) : int = x + y

CIS120

What is the value of this expresssion?

1. 1
2. true
3. fun (y:int) -> if true then 1 else y

4. fun (x:bool) -> if x then 1 else y

let f (x:bool) (y:int) : int =
if x then 1 else y in

f true

Answer: 3

CIS120

What is the value of this expression?

1. 1
2. 2
3. 3

4. 4
5. 5

let f (g : int->int) (y: int) : int =
g 1 + y in

f (fun (x:int) -> x + 1) 3

Answer: 5

CIS120

What is the type of this expression?

1. int
2. int -> int
3. int -> int -> int

4. (int -> int) -> int -> int
5. ill-typed

let f (g : int->int) (y: int) : int =
g 1 + y in

f (fun (x:int) -> x + 1)

Answer: 2

List transformations

A fundamental design pattern
using first-class functions

type entry = string * int
let phone_book = [("Steve", 2155559092), …]

let rec get_names (p : entry list) : string list =
begin match p with
| ((name, num)::rest) -> name :: get_names rest
| [] -> []
end

let rec get_numbers (p : entry list) : int list =
begin match p with
| ((name, num)::rest) -> num :: get_numbers rest
| [] -> []
end

Phone book example

Can we use first-class functions
to refactor code to share common

structure?

Refactoring

let rec helper (f:entry -> 'b) (p:entry list) : 'b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
| [] -> []
end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

fst and snd are functions that
access the parts of a tuple:
let fst (x,y) = x
let snd (x,y) = y

The argument f determines
what happens with the entry at the

head of the list

Going even more generic

Now let's make it work for all lists,
not just lists of entries…

let rec helper (f:entry -> 'b) (p:entry list) : 'b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
| [] -> []
end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

Going even more generic

‘a stands for (string*int)
‘b stands for int snd : (string*int) -> int

let rec helper (f:’a -> ’b) (p:’a list) : ’b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
| [] -> []
end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

Transforming Lists

let rec transform (f:'a -> 'b) (l:'a list) : 'b list =
begin match l with
| [] -> []
| h::t -> (f h)::(transform f t)
end

List transformation (a.k.a. “mapping a function across a list”*)
• foundational function for programming with lists
• occurs over and over again
• part of OCaml standard library (called List.map)

Example of using transform:
transform is_engr [“FNCE”;”CIS”;”ENGL”;”DMD”] =

[false;true;false;true]

*many languages (including OCaml) use the terminology “map” for the function that transforms a list by
applying a function to each element. Don’t confuse List.map with “finite map”.

