
Programming Languages
and Techniques

(CIS120)

Lecture 9

Lists and Higher-order functions
Lecture notes: Chapter 9

Announcements

• Homework 3 available
– Due next Tuesday at 11:59 pm
– Practice with BSTs, generic functions, first-class functions and

abstract types
– Start early!

• Reading: Chapters 8, 9, and 10 of the lecture notes

• Midterm 1: Friday, September 27th

– Coverage: up to Monday, Sept. 23 (Chs. 1-10)
– During lecture (001 @ 11am, 002 @ noon)

Last names: A – L Leidy Labs 10
Last names: M – Z Stitler (STIT) B6

CIS120

Anonymous, First-class Functions

fun (x : Tin) -> e

Named function values

CIS120

let add_one (x:int) : int = x+1

create a function valuedefine a name for
the value

A standard function definition…

The two definitions have the same type and behave exactly the same.
(The first is actually just an abbreviation for the second.)

let add_one : int->int = fun (x:int) -> x+1

really has two parts:

Function Types
• Functions have types that look like this:

• Examples:

tin -> tout

int -> int

int -> bool * int

int -> int -> int int input

(int -> int) -> int function input
CIS120

Function Types
• Functions have types that look like this:

• Examples:

int -> int

int -> (bool * int)

int -> (int -> int) int input

(int -> int) -> int function input

Parentheses matter!

int -> int -> int is equivalent to
int -> (int -> int) but not to
(int -> int) -> int

CIS120

tin -> tout

Function Types
Hang on… did we just say that

and

mean the same thing??

int -> int -> int

CIS120

int -> (int -> int)

Yes!

Multiple Arguments

CIS120

let sum (x : int) (y:int) : int = x + y

let sum = fun (x:int) -> fun (y:int) -> x + y

let sum : int -> int -> int

create a function valuedefine a variable with
that value

We can decompose a standard function definition

into parts

The two definitions have the same type and behave exactly the same

that returns a function value

Partial Application

sum 3
⟼ (fun (x:int) -> fun (y:int) -> x + y) 3 definition
⟼ fun (y:int) -> 3 + y substitute 3 for x

CIS120

let sum (x : int) (y:int) : int = x + y

CIS120

What is the value of this expresssion?

1. 1
2. true
3. fun (y:int) -> if true then 1 else y

4. fun (x:bool) -> if x then 1 else y

let f (x:bool) (y:int) : int =
if x then 1 else y in

f true

Answer: 3

CIS120

What is the value of this expression?

1. 1
2. 2
3. 3

4. 4
5. 5

let f (g : int->int) (y: int) : int =
g 1 + y in

f (fun (x:int) -> x + 1) 3

Answer: 5

CIS120

What is the type of this expression?

1. int
2. int -> int
3. int -> int -> int

4. (int -> int) -> int -> int
5. ill-typed

let f (g : int->int) (y: int) : int =
g 1 + y in

f (fun (x:int) -> x + 1)

Answer: 2

List transformations

A fundamental design pattern
using first-class functions

type entry = string * int
let phone_book = [(”Pat", 2155559092); …]

let rec get_names (p : entry list) : string list =
begin match p with
| ((name, num)::rest) -> name :: get_names rest
| [] -> []
end

let rec get_numbers (p : entry list) : int list =
begin match p with
| ((name, num)::rest) -> num :: get_numbers rest
| [] -> []
end

Phone book example

Can we use first-class functions
to refactor code to share common

structure?

Refactoring

let rec helper (f: entry->'b) (p: entry list) : 'b list =
begin match p with
| (e::rest) -> f e :: helper f rest
| [] -> []
end

let get_names (p: entry list) : string list =
helper fst p

let get_numbers (p: entry list) : int list =
helper snd p

fst and snd are functions that
access the parts of a tuple:
let fst (x,y) = x
let snd (x,y) = y

The argument f determines
what happens with the entry at the

head of the list

let rec helper (f: entry->'b) (p: entry list) : 'b list =
begin match p with
| (e::rest) -> f e :: helper f rest
| [] -> []
end

let get_names (p: entry list) : string list =
helper fst p

let get_numbers (p: entry list) : int list =
helper snd p

Going even more generic

Now let's make it work for all lists,
not just lists of entries…

let rec helper (f: 'a->'b) (p: 'a list) : 'b list =
begin match p with
| (e::rest) -> f e :: helper f rest
| [] -> []
end

let get_names (p: entry list) : string list =
helper fst p

let get_numbers (p: entry list) : int list =
helper snd p

Going even more generic

‘a stands for (string*int)
‘b stands for int snd : (string*int) -> int

Transforming Lists

let rec transform (f: 'a->'b) (l:'a list) : 'b list =
begin match l with
| [] -> []
| h::t -> (f h)::(transform f t)
end

List transformation
(a.k.a. “mapping a function across a list”)
• foundational function for programming with lists
• used over and over again
• part of OCaml standard library (called List.map)

*many languages (including OCaml) use the terminology “map” for the function that transforms a list by
applying a function to each element. Don’t confuse List.map with “finite map”.

What is the value of this expresssion?

1. [0; -1; 1; -2]

2. [1]

3. [1; 1; 0; 1]

4. [false; false; true; false]

5. runtime error

transform (fun (x:int) -> x > 0)
[0 ; -1; 1; -2]

ANSWER: 4

The ‘fold’ design pattern

let rec acid_length (l : acid list) : int =
begin match l with
| [] -> 0
| h :: t -> 1 + acid_length t
end

let rec exists (l : bool list) : bool =
begin match l with
| [] -> false
| h :: t -> h || exists t
end

• Is there a pattern in the definition of these two functions?

• Can we factor out this pattern using first-class functions?

Refactoring code, again

CIS120

combine step:
Do something with
the head of the list
and the result of the
recursive call

base case:
Simple answer when
the list is empty

let rec acid_length (l : acid list) : int =
begin match l with
| [] -> 0
| h :: t -> 1 + acid_length t
end

let rec exists (l : bool list) : bool =
begin match l with
| [] -> false
| h :: t -> h || exists t
end

Preparation

CIS120

let rec helper (l : acid list) : int =
begin match l with
| [] -> 0
| h :: t -> 1 + helper t
end

let acid_length (l : acid list) = helper l

let rec helper (l : bool list) : bool =
begin match l with
| [] -> false
| h :: t -> h || helper t
end

let exists (l : bool list) = helper l

Preparation

CIS120

let rec helper (l : acid list) : int =
begin match l with
| [] -> 0
| h :: t -> 1 + helper t
end

let acid_length (l : acid list) = helper l

let rec helper (l : bool list) : bool =
begin match l with
| [] -> false
| h :: t -> h || helper t
end

let exists (l : bool list) = helper l

Abstracting with respect to Base

CIS120

Abstracting with respect to Base

CIS120

let rec helper (base : int) (l : acid list) : int =
begin match l with
| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (l : acid list) = helper 0 l

let rec helper (base : bool) (l : bool list) : bool =
begin match l with
| [] -> base
| h :: t -> h || helper base t
end

let exists (l : bool list) = helper false l

let rec helper (base : int) (l : acid list) : int =
begin match l with
| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (l : acid list) = helper 0 l

let rec helper (base : bool) (l : bool list) : bool =
begin match l with
| [] -> base
| h :: t -> h || helper base t
end

let exists (l : bool list) = helper false l

Abstracting with respect to Combine

CIS120

let rec helper (base : int) (l : acid list) : int =
begin match l with
| [] -> base
| h :: t -> 1 + helper base t
end

let acid_length (l : acid list) = helper 0 l

let rec helper (base : bool) (l : bool list) : bool =
begin match l with
| [] -> base
| h :: t -> h || helper base t
end

let exists (l : bool list) = helper false l

Abstracting with respect to Combine

CIS120

Abstracting with respect to Combine

CIS120

let rec helper (combine : acid -> int -> int)
(base : int) (l : acid list) : int =

begin match l with
| [] -> base
| h :: t -> combine h (helper combine base t)
end

let acid_length (l : acid list) =
helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l

let rec helper (combine : bool -> bool -> bool)
(base : bool) (l : bool list) : bool =

begin match l with
| [] -> base
| h :: t -> combine h (helper combine base t)
end

let exists (l : bool list) =
helper (fun (h:bool) (acc:bool) -> h || acc) false l

let rec helper (combine : 'a -> 'b -> 'b)
(base : 'b) (l : 'a list) : 'b =

begin match l with
| [] -> base
| h :: t -> combine h (helper combine base t)
end

let acid_length (l : acid list) =
helper (fun (h:acid) (acc:int) -> 1 + acc) 0 l

let rec helper (combine : 'a -> 'b -> 'b)
(base : 'b) (l : 'a list) : 'b =

begin match l with
| [] -> base
| h :: t -> combine h (helper combine base t)
end

let exists (l : bool list) =
helper (fun (h:bool) (acc:bool) -> h || acc) false l

Making the Helper Generic

CIS120

List Fold

• fold (a.k.a. “reduce”)
– Like transform, foundational function for programming with lists
– Captures the pattern of recursion over lists
– Also part of OCaml standard library (List.fold_right)
– Similar operations for other recursive datatypes (fold_tree)

CIS120

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (l : 'a list) : 'b =

begin match l with
| [] -> base
| x :: t -> combine x (fold combine base t)
end

let exists (l : bool list) : bool =
fold (fun (h:bool) (acc:bool) -> h || acc) false l

let acid_length (l : acid list) : int =
fold (fun (h:acid) (acc:int) -> 1 + acc) 0 l

CIS120

How would you rewrite this function

using fold? What should be the arguments for base and
combine?

1. combine is: (fun (h:int) (acc:int) -> acc + 1)
base is: 0

2. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 0

3. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 1

4. sum can’t be written with fold.

let rec sum (l : int list) : int =
begin match l with
| [] -> 0
| h :: t -> h + sum t
end

Answer: 2

CIS120

How would you rewrite this function

using fold? What should be the arguments for base and combine?

1. combine is: (fun (h:int) (acc:int list) -> h :: acc)
base is: 0

2. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: 0

3. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: []

4. reverse can’t be written by with fold.

let rec reverse (l : int list) : int list =
begin match l with
| [] -> []
| h :: t -> reverse t @ [h]
end

Answer: 3

Functions as Data
• We’ve seen a number of ways in which functions can be

treated as data in OCaml
• Everyday programming practice offers many more examples

– objects bundle “functions” (a.k.a. methods) with data
– iterators (“cursors” for walking over data structures)
– event listeners (in GUIs)
– etc.

• Also heavily used at “large scale”: Google’s MapReduce
– Framework for transforming (mapping) sets of key-value pairs
– Then “reducing” the results per key of the map
– Easily distributed to 10,000 machines to execute in parallel!

CIS120

