
Programming Languages
and Techniques

(CIS120)

Lecture 10

Abstract types: Sets
Chapter 10

Announcements
• Homework 3
– due Tuesday at 11:59:59pm

• Reading: Chapters 8, 9, and 10 of the lecture notes

• Midterm 1: Friday, September 27th

– Coverage: up to Monday, Sept. 23 (Chs. 1-10)
– During lecture (001 @ 11am, 002 @ noon)

Last names: A – L Leidy Labs 10
Last names: M – Z Stitler (STIT) B6

– Review Material
• old exams on the web site lecture schedule

– Makeup exam: Monday, Sept. 30th

• sign up form on the web site

The ‘fold’ design pattern

List Fold

• fold (a.k.a. “reduce”)
– Like transform, foundational function for programming with lists
– Captures the pattern of recursion over lists
– Also part of OCaml standard library (List.fold_right)
– Similar operations for other recursive datatypes (fold_tree)

CIS120

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (l : 'a list) : 'b =

begin match l with
| [] -> base
| x :: t -> combine x (fold combine base t)
end

let exists (l : bool list) : bool =
fold (fun (h:bool) (acc:bool) -> h || acc) false l

let acid_length (l : acid list) : int =
fold (fun (h:acid) (acc:int) -> 1 + acc) 0 l

CIS120

How would you rewrite this function

using fold? What should be the arguments for base and
combine?

1. combine is: (fun (h:int) (acc:int) -> acc + 1)
base is: 0

2. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 0

3. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 1

4. sum can’t be written with fold.

let rec sum (l : int list) : int =
begin match l with
| [] -> 0
| h :: t -> h + sum t
end

Answer: 2

CIS120

How would you rewrite this function

using fold? What should be the arguments for base and combine?

1. combine is: (fun (h:int) (acc:int list) -> h :: acc)
base is: 0

2. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: 0

3. combine is: (fun (h:int) (acc:int list) -> acc @ [h])
base is: []

4. reverse can’t be written by with fold.

let rec reverse (l : int list) : int list =
begin match l with
| [] -> []
| h :: t -> reverse t @ [h]
end

Answer: 3

MORE EXAMPLES OF FOLD

See hof.ml

CIS120

Functions as Data
• We’ve seen a number of ways in which functions can be

treated as data in OCaml
• Everyday programming practice offers many more examples

– objects bundle “functions” (a.k.a. methods) with data
– iterators (“cursors” for walking over data structures)
– event listeners (in GUIs)
– etc.

• Also heavily used at “large scale”: Google’s MapReduce
– Framework for transforming (mapping) sets of key-value pairs
– Then “reducing” the results per key of the map
– Easily distributed to 10,000 machines to execute in parallel!

CIS120

Abstract Collections

Mathematical Sets
• Mathematical sets represent collections of things:

Empty Set: Ø no things
Nonempty Sets: {0, 1, 2, 3} four integers

{(0,1), (2,3)} two points in the plane
{true, false} two Boolean values

Manipulating Sets:
S ⋃ T union
S ⋂ T intersection

Predicates: x ∈ S “x is a member of set S”

CIS120

A set is an abstraction
• A set is a collection of data
– we have operations for forming sets of elements
– we can ask whether elements are in a set

• A set is a lot like a list, except:
– Order doesn't matter
– Duplicates don't matter
– It isn't built into OCaml

• Sets show up frequently in applications
– Examples: set of students in a class, set of coordinates in a

graph, set of answers to a survey, set of data samples from
an experiment, …

An element’s presence or absence in the
set is all that matters…

Abstract type: set
• A BST can implement (represent) a

set
– there is a way to represent an empty set

(Empty)
– there is a way to list all elements contained in

the set (inorder)
– there is a way to test membership (lookup)
– Can define union/intersection (with insert

and delete)

• BSTs are not the only way to
implement sets

1

0 3

< >

concrete representation

1

3

0

abstract view

Three Example Representations of Sets

1

3

0

abstract view
concrete representation

3 1 0 X X

Alternate representation:
reverse sorted array with
Index of next slot.

1

3

0

abstract view

1

3

0

abstract view
concrete representation

Alternate representation:
unsorted linked list.

3::0::1::[]

1

0 3

< >

concrete representation

BST:

Abstract types (e.g. set)
• An abstract type is defined by its interface

and its properties, not its representation
• Interface: defines the type and operations

– There is a type of sets
– There is an empty set
– There is a way to add elements to a set to make a bigger

set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations
interact with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the

elements of a set
– Adding in a different order doesn’t change the elements

of a set

• Any type that satisfies the interface and
properties can be a set

1

3

0

abstract view

?
concrete representation

Sets in OCaml

OCaml directly supports the declaration of
abstract types via signatures

module type SET = sig

type 'a set

val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool
val equals : 'a set -> 'a set -> bool
val set_of_list : 'a list -> 'a set

end

Set Signature

Type declaration has no
“right-hand side” – its
representation is abstract!

The sig keyword indicates
an interface declaration

The interface members are the (only!)
means of manipulating the abstract type.

The name of the signature

Signature (a.k.a. interface): defines operations on the type

Implementing sets
• There are many ways to implement sets

– lists, trees, arrays, etc.

• How do we choose which implementation?
– Depends on the needs of the application…
– How often is ‘member’ used vs. ‘add’?
– How big can the sets be?

• Many such implementations are of the flavor
“a set is a … with some invariants”
– A set is a list with no repeated elements.
– A set is a tree with no repeated elements
– A set is a binary search tree
– A set is an array of bits, where 0 = absent, 1 = present

• How do we preserve the invariants of the implementation?

Invariant: a property that
remains unchanged when
a specified transformation is
applied.

A module implements an interface
• An implementation of the set interface will look like this:

module BSTSet : SET = struct
…
(* implementations of type and operations *)
…

end

Name of the module

Signature that it implements

The struct keyword indicates
a module implementation

Implement the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree

let empty : 'a set = Empty
…

end

• The implementation must include everything promised by the interface
– It can contain more functions and type definitions (e.g. auxiliary or helper

functions) but those cannot be used outside the module
– The types of the provided implementations must match the signature

Module must define (give a
concrete representation to) the
type declared in the signature

Abstract vs. Concrete BSTSet

1

3

0

abstract view

1

0 3

< >

concrete representation

s =
module BSTSet : SET = struct
type 'a tree = …
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set =

... (* can treat s as a tree *)

end

(* A client of the BSTSet module *)
;; open BSTSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Another Implementation

module ULSet : SET =
struct

type 'a set = 'a list

let empty : 'a set = []
…

end

A different definition for
the type set

Abstract vs. Concrete ULSet

1

3

0

abstract view
concrete representation

s = 0::3::1::[]

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =

x::s (* can treat s as a list *)

end

(* A client of the ULSet module *)
;; open ULSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Client code doesn’t change!

Testing (and using) sets
• To use the values defined in the set module, use the “dot”

syntax:
ULSet.<member>

• Note: Module names must be capitalized in OCaml

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1

let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test

Testing (and using) sets
• Alternatively, use “open” to bring all of the names defined in

the interface into scope.

;; open ULSet

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1

let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;; run_test "ULSet.member 4 s3" test

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = add 1 empty

Answer: yes

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = begin match s1 with

| Node (_,k,_) -> k
| Empty -> failwith “impossible”
end

Answer: no, add constructs a set, not a tree

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no, cannot access helper functions outside the module

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = …
…

end

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data
constructor is not
available outside the module

CIS120

If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)

CIS120

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

Completing ULSet

See sets.ml

Abstract types

• The interface restricts how other parts of the program can interact with
the data
– Type checking ensures that the only way to create a set is with the operations

in the interface
– If all operations preserve invariants, then all sets in the program must satisfy

invariants
– Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input satisfies the invariant

• Benefits:
– Safety: The other parts of the program can’t cause bugs in the set

implementation
– Modularity: It is possible to change the implementation without changing the

rest of the program

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants

Summary: Abstract Types
• Different programming languages have different ways of

letting you define abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation is achieved because the interface can omit information

• type definitions
• names and types of auxiliary functions

– Clients cannot mention values or types not named in the interface

Bonus Material: OCaml Details

module and interface files

.ml and .mli files
• You’ve already been using signatures and modules in OCaml.

• A series of type and val declarations stored in a file foo.mli
is considered as defining a signature FOO

• A series of top-level definitions stored in a file foo.ml is
considered as defining a module Foo

module type FOO = sig
type t
val z : t
val f : t -> int

end

module Foo : FOO = struct
type t = int
let z : t = 0
let f (x:t) : int =
x + 1

end

module Test = struct
;; open Foo
;; print_int

(Foo.f Foo.z)
end

type t
val z : t
val f : t -> int

foo.mli

type t = int
let z : t = 0
let f (x:t) : int =
x + 1

foo.ml

;; open Foo
;; print_int

(Foo.f Foo.z)

test.ml

Files

