Programming Languages
and Techniques
(C1S120)

Lecture 10

Abstract types: Sets
Chapter 10

Announcements

e Homework 3
— due Tuesday at 11:59:59pm

* Reading: Chapters 8, 9, and 10 of the lecture notes

* Midterm 1: Friday, September 27t
— Coverage: up to Monday, Sept. 23 (Chs. 1-10)

— During lecture (001 @ 11am, 002 @ noon)
Last names: A-L Leidy Labs 10
Last names: M—Z Stitler (STIT) B6

— Review Material
* old exams on the web site lecture schedule

— Makeup exam: Monday, Sept. 30th
* sign up form on the web site

The ‘fold” design pattern

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : '"a list) : 'b =
begin match 1 with

| [] -> base
| X :: t -> combine x (fold combine base t)
end

let exists (1 : bool list) : bool =
fold (fun Ch:bool) (acc:bool) -> h || acc) false 1

let acid_length (1 : acid list) : int =
fold (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

- fold (a.k.a. “reduce”)
— Like transform, foundational function for programming with lists

— Captures the pattern of recursion over lists
— Also part of OCaml standard library (L1st.fold_right)
— Similar operations for other recursive datatypes (fold_tree)

CIS120

Rewrite using fold

How would you rewrite this function

let rec sum (1 : int list) : int =
begin match 1 with]_
I [J->0
h::t->h+sumt
end

using fold? What should be the arguments for base and 2
combine?

1. combineis: (fun (h:int) (acc:int) -> acc + 1)

base is: 0 3

2. combineis: (fun (h:int) (acc:int) -> h + acc)
base is:

3. combineis: (fun (h:int) (acc:int) -> h + acc)
base is: 1 4

4. sum can’t be written with fold.

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

CIS120

How would you rewrite this function

let rec sum (1 : int 1list) : int =
begin match 1 with

[1 -> 0

| h ::

end

t -> h + sum t

using fold? What should be the arguments for base and

combine?

1. combineis:

base is:

2. combineis:

base is:

3. combineis:

base is:

sum can’t be written with fold. Answer: 2

(fun (h:int) (acc:int) -> acc + 1)
0

(fun (h:int) (acc:int) -> h + acc)
0

(fun (h:int) (acc:int) -> h + acc)
1

Rewrite using fold

How would you rewrite this function 1

let rec reverse (1 : int list) : int list =
begin match 1 with
I 0->0
| h::t->reverse t @ [h]

end ;2

using fold? What should be the arguments for base and combine?

1. combineis: (fun (h:int) (acc:int list) -> h :: acc)
0

base is:

2. combineis: (fun Ch:int) (acc:int list) -> acc @ [h]) 3
base is: 0

3. combineis: (fun (h:int) (acc:int list) -> acc @ [h])
base is: 0

4. reverse can't be written by with fold. 4

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

How would you rewrite this function

begin match 1 with

| [] -> []
| h :: t -> reverse t @ [h]
end

let rec reverse (1 : int 1list) : int list =

base is: /)

base is: /)

base is: []

4. reverse can’t be written by with fold.

1. combineis: (fun (h:int) (acc:int list) -> h ::

Answer: 3

using fold? What should be the arguments for base and combine?

acc)

2. combineis: (fun Ch:int) (acc:int 1list) -> acc @ [h])

3. combineis: (fun Ch:1int) (acc:int 1ist) -> acc @ [h])

CIS120

See hof.ml

MORE EXAMPLES OF FOLD

CCCCCC

Functions as Data

We’ve seen a number of ways in which functions can be
treated as data in OCaml|

Everyday programming practice offers many more examples
— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

Also heavily used at “large scale”: Google’s MapReduce
— Framework for transforming (mapping) sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

Mathematical Sets

 Mathematical sets represent collections of things:

Empty Set: ") no things

Nonempty Sets: {0, 1, 2, 3} four integers
{(0,1), (2,3)} two points in the plane
{true, false} two Boolean values
Manipulating Sets:
SUT union
SAT intersection

Predicates: XES “x is a member of set §”

A set is an abstraction

e Asetis a collection of data

— we have operations for forming sets of elements
— we can ask whether elements are in a set

 Asetis alot like a list, except:
— Order doesn't matter
— Duplicates don't matterj|'
— Itisn't built into OCaml

An element’s presence or absence in the
set is all that matters...

e Sets show up frequently in applications

— Examples: set of students in a class, set of coordinates in a
graph, set of answers to a survey, set of data samples from
an experiment, ...

Abstract type: set

A BST can implement (represent) a

set
— there is a way to represent an empty set
(Empty)

— there is a way to list all elements contained in
the set (inorder)

— there is a way to test membership (lookup)

— Can define union/intersection (with insert T T Lbstract view
and delete)

 BSTs are not the only way to @ @
implement sets @

Three Example Representations of Sets

concrete representation

abstract view

Alternate representation:
reverse sorted array with
Index of next slot.

J
3::0::1::[] 3/1 0 X | X

Alternate representation:
unsorted linked list.

concrete representation

abstract view

concrete representation

abstract view

® ®
© ©
® ®

Abstract types (e.g. set)

An abstract type is defined by its interface
and its properties, not its representation

Interface: defines the type and operations

There is a type of sets
There is an empty set

There is a way to add elements to a set to make a bigger
set

There is a way to list all elements in a set
There is a way to test membership

Properties: define how the operations
interact with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the
elements of a set

Adding in a different order doesn’t change the elements
of a set

Any type that satisfies the interface and
properties can be a set

concrete represe ntation

abstract view

®
©
®

OCaml directly supports the declaration of
abstract types via signatures

The name of the signature

Set Signature

S

e

N

val empty
val add

val member
val equals

end

module type SET = sig —

type 'a set «-

The s1g keyword indicates
an interface declaration

val set_of_list

set

Type declaration has no
“right-hand side” —its
representation is abstract!

™~

a
a-> 'a set -> 'a set

a -> 'a set -> bool

a set -> 'a set -> bool
a list -> 'a set

S~

The interface members are the (only!)
means of manipulating the abstract type.

Signature (a.k.a. interface): defines operations on the type

Implementing sets

There are many ways to implement sets
— lists, trees, arrays, etc.

How do we choose which implementation?
— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’?
— How big can the sets be?

Many such implementations are of the flavor

“a setis a ... with some invariants” Invariant: a property that
— Aset is a list with no repeated elements. remains unchanged when
— A setis a tree with no repeated elements a specified transformation is
— Asetis a binary search tree applied.
— Asetis an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants of the implementation?

A module implements an interface

 Animplementation of the set interface will look like this:

Name of the module

Signature that it implements

| The struct keyword indicates

a module implementation

module BSTSet : SETK/'struct
E* implementations of type and operations *)

ena

Implement the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

Module must define (give a
concrete representation to) the
type declared in the signature

type 'a set = 'a tree ._

let empty : 'a set = Empty

ena

 The implementation must include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the signature

Abstract vs. Concrete BSTSet

module BSTSet : SET = struct
type 'a tree = ..
type 'a set = 'a tree
< > let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set =
... (* can treat s as a tree *)

end
————————————— -
_ l-module type SET = sig I
concrete representatlon | type 'a set
—————————— - - - - Va-l_ empty : 'a Set F---
abstract view : val add : 'a -> 'a set -> 'a set I
end

(* A client of the BSTSet module *)

@ @ ;5 open BSTSet

let s : int set
= add @ (add 3 (add 1 empty))

Another Implementation

module ULSet : SET =
struct

] A different definition for
type 'a set = 'a list <« the type set

let empty : 'a set = []

end

Abstract vs. Concrete ULSet

S

0::3::1::[]

concrete represe ntation

abstract view

®
©
®

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =
X::s (* can treat s as a list *)

end
_____________ -
l-module type SET = sig I
I +type 'a set
=== val empty : 'a set ===
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the ULSet module *)
;5 open ULSet

let s : int set
= add @ (add 3 (add 1 empty))

\

Client code doesn’t change!

Testing (and using) sets

 To use the values defined in the set module, use the “dot”

syntax:
ULSet .<member>

* Note: Module names must be capitalized in OCaml|

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 sl

let test () : bool = (ULSet.member 3 sl1)
;35 run_test "ULSet.member 3 s1" test

let test (O : bool = (ULSet.member 4 s3)
;35 run_test "ULSet.member 4 s3" test

Testing (and using) sets

* Alternatively, use “open” to bring all of the names defined in
the interface into scope.

;3 open ULSet

let sl = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test () : bool = (member 3 sl)
;3 run_test "ULSet.member 3 s1" test

let test (O : bool = (member 4 s3)
;3 run_test "ULSet.member 4 s3" test

Does this code typecheck?

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end yeS

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena n O

;5 open BSTSet
let s1 : int set = add 1 empty

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

;5 open BSTSet

let s1 : int set = add 1 empty

1. yes
2. no

Answer: yes

CIS120

Does this code typecheck?

module type SET = sig
type 'a set
val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct yeS
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

ena

;5 open BSTSet
let s1 = add 1 empty NO
let il = begin match sl with

| Node (_,k,_.) -> k

| Empty -> failwith “impossible”
end

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Does this code type check?

1. yes
2. no

;5 open BSTSet
let s1 = add 1 empty

let 11 = begin match sl with
| Node (_,k,_) -> k
| Empty -> failwith “impossible”

end

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct

type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree

let empty : 'a set = Empty

ena

CIS120

Answer: no, add constructs a set, not a tree

Does this code typecheck?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct yeS
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..

end

no

;5 open BSTSet
let s1 = add 1 empty
let 11 = size sl

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..
end

;5 open BSTSet

let il = size sl

let sl = add 1 empty

1. yes
2. no

Answer: no, cannot access helper functions outside the module

CIS120

Does this code typecheck?

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set
end y e S
module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty

end

no

;5 open BSTSet
let sl : int set = Empty

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> 'a set -> 'a set
end

module BSTSet : SET = struct

type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree

. let empty : 'a set = Empty
Does this code type check?
end

;5 open BSTSet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data
constructor is not

available outside the module
CIS120

If a client module works correctly and starts with:

;5 open ULSet

will it continue to work if we change that line to:

;5 open BSTSet

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. O

Answer: yes (though performance may be different)

CIS120

module type SET = sig

type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

val member : 'a -> 'a set -> bool

end

module BSTSet : SET = struct

type 'a tree =

| Empty

| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree

let empty : 'a set = Empty

ena

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the

15190 interface.

See sets.ml

Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants

The interface restricts how other parts of the program can interact with

the data

— Type checking ensures that the only way to create a set is with the operations

in the interface

— If all operations preserve invariants, then all sets in the program must satisfy

invariants

— Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input satisfies the invariant

* Benefits:

Safety: The other parts of the program can’t cause bugs in the set
implementation

Modularity: It is possible to change the implementation without changing the
rest of the program

Summary: Abstract Types

» Different programming languages have different ways of
letting you define abstract types

e At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

* InOCaml:
— Interfaces are specified using a signature or interface
— Encapsulation is achieved because the interface can omit information
* type definitions
* names and types of auxiliary functions
— Clients cannot mention values or types not named in the interface

Bonus Material: OCaml Details

module and interface files

.ml and .mli files

You’'ve already been using signatures and modules in OCaml.

A series of type and val declarations stored in a file foo.ml1
is considered as defining a signature FOO

A series of top-level definitions stored in a file foo.ml is
considered as defining a module FOO

//:;;Jnﬁ

type t
val z : t
val f : £t -> int

foo.ml

~

type t = int
letz : £t =0
let f (x:t) : int =

X + 1
test.ml

;3 open Foo

;5 print_int

(Foo.f Foo.z)

module type FOO = sig

type t

val z : t

val f : t -> 1int
end

module Foo : FOO = struct
type t = int
letz : t =0
let f (x:t) : int =
X + 1
end

module Test = struct
;3 open Foo
;5 print_int
(Foo.f Foo.z)
end

\\\\‘ Files

/

