Programming Languages and Techniques (CIS120)

Lecture 11

Review: Abstract types Finite Maps

Midterm 1

- Friday, September 27th
- Coverage: up to Monday, Sept. 23 (Chs. 1-10)
- Time: During lecture $(001 \ @ \ 11am, 002 \ @ \ noon)$ Last names: $A - L$ Leidy Labs 10 Last names: $M - Z$ Stitler (STIT) B6
- Review Session: Wednesday 6:00-8:00pm Towne 100
- Review Material:
	- old exams on the web site lecture schedule
- Makeup exam
	- Monday, Sept. 30th
	- sign up form on the web site

Announcements

- Homework 3
	- due *Tuesday* at 11:59:59pm
- Homework 4
	- Available soon after exam
	- Due: Tuesday, Oct. 8th

Review: Abstract types (e.g. set)

- An abstract type is defined by its *interface* and its *properties,* not its representation.
- Interface: defines operations on the type
	- There is an empty set
	- There is a way to add elements to a set to make a bigger set
	- There is a way to list all elements in a set
	- There is a way to test membership
- Properties: define how the operations interact with each other
	- Elements that were added can be found in the set
	- Adding an element a second time doesn't change the elements of a set
	- Adding in a different order doesn't change the elements of a set
- Any type (possibly with invariants) that satisfies the interface and properties can be a set.
- *Clients of an implementation can only access what is explicitly in the abstract type's interface*

abstract view concrete representation

Another Implementation

Abstract vs. Concrete ULSet

```
module ULSet : SET = struct
  type 'a set = 'a list
  let empty : 'a set = \squarelet add (x:'a) (s:'a set) :'a set =
     x::s (* can treat s as a list *)
```

$$
s = 0::3::1::[]
$$

(* A client of the ULSet module *) ;; open ULSet let s : int set $=$ add 0 (add 3 (add 1 empty)) module type SET = sig type 'a set val empty : 'a set val add : 'a -> 'a set -> 'a set end Client code doesn't change!

Testing (and using) sets

• To use the values defined in the set module, use the "dot" syntax:

ULSet.*<member>*

• Note: Module names must be capitalized in OCaml

```
let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test
let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test
```
Testing (and using) sets

• Alternatively, use "open" to bring all of the names defined in the interface into scope. (Saves on repeating "ULSet.")

```
;; open ULSet
let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1let test () : bool = (member 3 s1);; run_test "ULSet.member 3 s1" test
let test () : bool = (member 4 s3);; run_test "ULSet.member 4 s3" test
```


CIS120

Answer: no, add constructs a set, not a tree

Answer: no, cannot access helper functions outside the module

 $let s1 : int set = Empty$

Answer: no, the Empty data constructor is not available outside the module

Answer: yes (though performance may be different)

Is is possible for a client to call member with a tree that is not a BST? 1. yes

2. no

No: the BSTSet operations preserve the BST invariants. there is no way to construct a non-BST tree using the interface.

What Should You Test?

- Interface: defines operations on the type
- Properties: define how the operations interact
	- Elements that were added can be found in the set
	- Adding an element a second time doesn't change the elements of a set
	- Adding in a different order doesn't change the elements of a set

Test the properties!

A *property* is a general statement about the behavior of the interface: For *any* set S and *any* element X:

member
$$
x
$$
 (add x s) = true

A (good) test case checks a specific instance of the property: let $s1 = add 3$ empty let test $() : bool = (member 3 s1)$;; run_test "ULSet.member 3 s1" test

Property-based Testing

1. Translate informal requirements into general statements about the interface.

> Example: "Order doesn't matter" becomes For *any* set s and *any* elements x and y, add x (add y s) equals add y (add x s)

2. Write tests for the "interesting" instances of the general statement.

```
Example. "interesting" choices:
  s = empty, s = nonempty,
  x = y, x \Leftrightarrow yone or both of x, y already in s
```
Notes:

- one can't (usually) exhaustively test all possibilities (too many!) so instead, cover the "interesting" possibilities
- be careful with equality! ULSet.equal is *not* the same as =.

Completing ULSet

See sets.ml

Finite Maps

Another example of abstract datatype interfaces & concrete implementations

Motivating Scenario

- Suppose you were writing some course-management software and needed to look up the lab section for a student given the student's PennKey?
	- Students might add/drop the course
	- Students might switch lab sections
	- Students should be in only *one* lab section
- How would you do it? What data structure would you use?

Example

- Each key is associated with a value. \bullet
	- No two keys are identical
	- Values can be repeated
- Given the key "stephanie" we want to find / lookup the value 15 \bullet

Finite Maps

- A *finite map* (a.k.a. *dictionary*) is a collection of *bindings* from distinct *keys* to *values*.
	- Operations to *add* & *remove* bindings, *test* for key membership, *look up* the value bound to a particular key
- Example: a (string, int) map might map a PennKey to the lab section.
	- The map type is generic in *two* arguments
- Like sets, finite maps appear in many settings to map:
	- domain names to IP addresses
	- words to their definitions (a dictionary)
	- user names to passwords
	- game character unique identifiers
		- to dialog trees

– …

Signature: Finite Map

```
module type MAP = sig
  type ('k,'v) map
  val empty : ('k,'v) map
  val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
  val remove : 'k \rightarrow ('k,'v) map -> ('k,'v) map
  val mem : 'k \rightarrow ('k,'v) map \rightarrow bool
 val get : 'k -> ('k, 'v) map -> 'v
  val entries : ('k,'v) map \rightarrow ('k * 'v) list
 val equals : ('k,'v) map \rightarrow ('k,'v) map \rightarrow bool
end
```
Properties of Finite Maps

For any finite map m, key k, and value v:

- 1. get k (add k v m) = v
- 2. If $k1 \Leftrightarrow k2$ then get k1 (add k2 v2 (add k1 v1 m)) = v1
- 3. if mem k m $=$ true then there is a v such that get k $m = v$

4. If
$$
mem \le m = false
$$
 then
get $km = v$ fails

- 5. mem k (add k v m) = true
- 6. mem k (remove k m) = false And others…

Tests for Finite Map abstract type

;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. $*)$

```
(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty
```

```
(* list entries for this simple map *)
;; run_test "entries m1" (fun () -> entries m1 = [(1,"uno")])
```

```
(* access value for key in the map *);; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno")
```

```
(* find for value that does not exist in the map? *);; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos" )
```

```
let m2 : (int, string) map = add 1 "un" m1
```

```
(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")
```

```
(* entries after redefining value, should only show new value *)
;; run_test "entries m2" (fun () -> entries m2 = [(1, "un")])
CIS120
```
Implementation: Ordered Lists

module Assoc : MAP = struct

```
(* Represent a finite map as a list of pairs. *)
  (* Representation invariant: *)
  (* - no duplicate keys (helps get, remove) *)
  (* - keys are sorted (helps equals, helps get) *)
type ('k,'v) map = ('k * 'v) list
  let empty : ('k,'v) map = \Boxlet rec mem (key:'k) (m : ('k,'v) map) : bool =
    begin match m with
    | | \rightarrow false
   | (k,v):rest ->
     (key >= k) &&
         ((key = k) || (mem key rest))end
```
;; run_test "mem test" (fun () -> mem "b" $[('a", 3); (''b", 4)]$)

Implementation: Ordered Lists

```
let rec get (key:'k) (m : ('k,'v) map) : 'v =
  begin match m with
  | [] -> failwith "key not found"
  | (k,v):rest \rightarrowif key < k then failwith "key not found"
    else if key = k then velse get key rest
  end
let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
  begin match m with
  \Box \Box \rightarrow \Box\mid (k,v):: rest ->
    if key < k then melse if key = k then rest
    else (k,v)::remove key rest
  end
```
Completing module implementation

finiteMap.ml

Abstract types

BIG IDEA: Hide the *concrete representation* of a type behind an *abstract interface* to preserve invariants

- The interface **restricts** how other parts of the program can interact with the data
	- Type checking ensures that the **only** way to create a set is with the operations in the interface
	- If all operations preserve invariants, then all sets in the program must satisfy invariants
	- Example: all BST-implemented sets must satisfy the BST invariant, therefore the lookup function can assume that its input satisfies the invariant
- Benefits:
	- **Safety**: The other parts of the program can't cause bugs in the set implementation
	- **Modularity**: It is possible to change the implementation without changing the rest of the program

Summary: Abstract Types

- Different programming languages have different ways of letting you define abstract types
- At a minimum, this means providing:
	- A way to specify (write down) an interface
	- A means of hiding implementation details (*encapsulation*)
- In OCaml:
	- Interfaces are specified using a *signature* or *interface*
	- Encapsulation is achieved because the interface can *omit* information
		- type definitions
		- names and types of auxiliary functions
	- Clients *cannot* mention values or types not named in the interface

Bonus Material: OCaml Details

module and interface files

.ml and .mli files

- You've already been using signatures and modules in OCaml.
- A series of type and val declarations stored in a file foo.mli is considered as defining a signature FOO
- A series of top-level definitions stored in a file foo.ml is considered as defining a module Foo


```
module type FOO
= sig
  type
t
  val
z
:
t
  val
f
:
t
-
> int
end
module Foo
: FOO
= struct
  type t = int
  let z : t = 0
  let
f
(x
:
t
)
: int
=
    x
+
1
end
module Test
= struct
  ;; open Foo
  ;; print_int (Foo.f Foo
.
z
)
end
```