
Programming Languages
and Techniques

(CIS120)

Lecture 11

Review: Abstract types
Finite Maps

Midterm 1

• Friday, September 27th

• Coverage: up to Monday, Sept. 23 (Chs. 1-10)
• Time: During lecture (001 @ 11am, 002 @ noon)

Last names: A – L Leidy Labs 10
Last names: M – Z Stitler (STIT) B6

• Review Session: Wednesday 6:00-8:00pm Towne 100
• Review Material:
– old exams on the web site lecture schedule

• Makeup exam
– Monday, Sept. 30th

– sign up form on the web site

Announcements

• Homework 3
– due Tuesday at 11:59:59pm

• Homework 4
– Available soon after exam
– Due: Tuesday, Oct. 8th

Review: Abstract types (e.g. set)
• An abstract type is defined by its interface and

its properties, not its representation.

• Interface: defines operations on the type
– There is an empty set
– There is a way to add elements to a set to make a bigger set
– There is a way to list all elements in a set
– There is a way to test membership

• Properties: define how the operations interact
with each other
– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements

of a set
– Adding in a different order doesn’t change the elements of a set

• Any type (possibly with invariants) that satisfies
the interface and properties can be a set.

• Clients of an implementation can only access
what is explicitly in the abstract type’s interface

1

3

0

abstract view

?
concrete representation

Another Implementation

module ULSet : SET =
struct

type 'a set = 'a list

let empty : 'a set = []
…

end

A different definition for
the type set

Abstract vs. Concrete ULSet

1

3

0

abstract view
concrete representation

s = 0::3::1::[]

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set =

x::s (* can treat s as a list *)

end

(* A client of the ULSet module *)
;; open ULSet

let s : int set
= add 0 (add 3 (add 1 empty))

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

Client code doesn’t change!

Testing (and using) sets
• To use the values defined in the set module, use the “dot”

syntax:
ULSet.<member>

• Note: Module names must be capitalized in OCaml

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 s1

let test () : bool = (ULSet.member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (ULSet.member 4 s3)
;; run_test "ULSet.member 4 s3" test

Testing (and using) sets
• Alternatively, use “open” to bring all of the names defined in

the interface into scope. (Saves on repeating “ULSet.”)

;; open ULSet

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 s1

let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

let test () : bool = (member 4 s3)
;; run_test "ULSet.member 4 s3" test

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = add 1 empty

Answer: yes

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = begin match s1 with

| Node (_,k,_) -> k
| Empty -> failwith “impossible”
end

Answer: no, add constructs a set, not a tree

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

CIS120

Does this code type check?

1. yes
2. no

;; open BSTSet
let s1 = add 1 empty
let i1 = size s1

Answer: no, cannot access helper functions outside the module

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = …
…

end

CIS120

Does this code type check?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

;; open BSTSet
let s1 : int set = Empty

Answer: no, the Empty data
constructor is not
available outside the module

CIS120

If a client module works correctly and starts with:

will it continue to work if we change that line to:

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

;; open ULSet

;; open BSTSet

Answer: yes (though performance may be different)

CIS120

Is is possible for a client to call member with a tree that is
not a BST?

1. yes
2. no

module type SET = sig
type 'a set
val empty : 'a set
val add : 'a -> 'a set -> 'a set
val member : 'a -> 'a set -> bool

end

module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree

type 'a set = 'a tree
let empty : 'a set = Empty
…

end

No: the BSTSet operations preserve the BST invariants.
there is no way to construct a non-BST tree using the
interface.

What Should You Test?
• Interface: defines operations on the type
• Properties: define how the operations interact

– Elements that were added can be found in the set
– Adding an element a second time doesn’t change the elements of a set
– Adding in a different order doesn’t change the elements of a set

CIS120

Test the properties!
A property is a general statement about the behavior of the
interface: For any set s and any element x:

member x (add x s) = true
A (good) test case checks a specific instance of the property:

let s1 = add 3 empty
let test () : bool = (member 3 s1)
;; run_test "ULSet.member 3 s1" test

Property-based Testing
1. Translate informal requirements into general statements about the

interface.

2. Write tests for the “interesting” instances of the general
statement.

Notes:
- one can’t (usually) exhaustively test all possibilities (too many!)

so instead, cover the “interesting” possibilities
- be careful with equality! ULSet.equal is not the same as =.

CIS120

Example: “Order doesn’t matter” becomes
For any set s and any elements x and y,
add x (add y s) equals add y (add x s)

Example. “interesting” choices:
s = empty, s = nonempty,
x = y, x <> y
one or both of x, y already in s

Completing ULSet

See sets.ml

Finite Maps

Another example of abstract datatype interfaces
& concrete implementations

Motivating Scenario
• Suppose you were writing some course-management

software and needed to look up the lab section for a
student given the student’s PennKey?
– Students might add/drop the course
– Students might switch lab sections
– Students should be in only one lab section

• How would you do it? What data structure would
you use?

CIS120 24

Example

• Each key is associated with a value.
– No two keys are identical
– Values can be repeated

• Given the key “stephanie" we want to find / lookup the value 15

CIS120

Key Value
“stephanie” 15

“mitch” 05
“ezaan” 10
“likat” 15

… …

Finite Maps
• A finite map (a.k.a. dictionary) is a collection of bindings from

distinct keys to values.
– Operations to add & remove bindings, test for key membership, look

up the value bound to a particular key

• Example: a (string, int) map might map a PennKey
to the lab section.
– The map type is generic in two arguments

• Like sets, finite maps appear in many settings to map:
– domain names to IP addresses
– words to their definitions (a dictionary)
– user names to passwords
– game character unique identifiers

to dialog trees
– …

CIS120 26

Signature: Finite Map

module type MAP = sig

type ('k,'v) map

val empty : ('k,'v) map
val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
val remove : 'k -> ('k,'v) map -> ('k,'v) map
val mem : 'k -> ('k,'v) map -> bool
val get : 'k -> ('k,'v) map -> 'v
val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

Properties of Finite Maps
For any finite map m, key k, and value v:
1. get k (add k v m) = v
2. If k1 <> k2 then

get k1 (add k2 v2 (add k1 v1 m)) = v1
3. if mem k m = true then

there is a v such that get k m = v
4. If mem k m = false then

get k m = v fails
5. mem k (add k v m) = true
6. mem k (remove k m) = false
And others…

CIS120

Tests for Finite Map abstract type
;; open Assert

(* Specifying the properties of the MAP abstract type via test cases. *)

(* A simple map with one element. *)
let m1 : (int,string) map = add 1 "uno" empty

(* list entries for this simple map *)
;; run_test "entries m1" (fun () -> entries m1 = [(1,"uno")])

(* access value for key in the map *)
;; run_test "find 1 m1" (fun () -> (get 1 m1) = "uno")

(* find for value that does not exist in the map? *)
;; run_failing_test "find 2 m1" (fun () -> (get 2 m1) = "dos")

let m2 : (int, string) map = add 1 "un" m1

(* find after redefining value, should be new value *)
;; run_test "find 1 m2" (fun () -> (get 1 m2) = "un")

(* entries after redefining value, should only show new value *)
;; run_test "entries m2" (fun () -> entries m2 = [(1, "un")])

(* test membership *)
;; run_test "mem test" (fun () ->

mem "b" (add "a" 3 (add "b" 4 empty)))

CIS120

Implementation: Ordered Lists
module Assoc : MAP = struct

(* Represent a finite map as a list of pairs. *)
(* Representation invariant: *)
(* - no duplicate keys (helps get, remove) *)
(* - keys are sorted (helps equals, helps get) *)

type ('k,'v) map = ('k * 'v) list

let empty : ('k,'v) map = []

let rec mem (key:'k) (m : ('k,'v) map) : bool =
begin match m with
| [] -> false
| (k,v)::rest ->
(key >= k) &&

((key = k) || (mem key rest))
end

;; run_test "mem test" (fun () -> mem "b" [("a",3); ("b",4)])

CIS120

Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =
begin match m with
| [] -> failwith "key not found"
| (k,v)::rest ->
if key < k then failwith "key not found"
else if key = k then v
else get key rest

end

let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
begin match m with
| [] -> []
| (k,v)::rest ->
if key < k then m
else if key = k then rest
else (k,v)::remove key rest

end

CIS120

Completing module implementation

finiteMap.ml

Abstract types

• The interface restricts how other parts of the program can interact with
the data
– Type checking ensures that the only way to create a set is with the operations

in the interface
– If all operations preserve invariants, then all sets in the program must satisfy

invariants
– Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input satisfies the invariant

• Benefits:
– Safety: The other parts of the program can’t cause bugs in the set

implementation
– Modularity: It is possible to change the implementation without changing the

rest of the program

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants

Summary: Abstract Types
• Different programming languages have different ways of

letting you define abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation is achieved because the interface can omit information

• type definitions
• names and types of auxiliary functions

– Clients cannot mention values or types not named in the interface

Bonus Material: OCaml Details

module and interface files

.ml and .mli files
• You’ve already been using signatures and modules in OCaml.

• A series of type and val declarations stored in a file foo.mli
is considered as defining a signature FOO

• A series of top-level definitions stored in a file foo.ml is
considered as defining a module Foo

module type FOO = sig
type t
val z : t
val f : t -> int

end

module Foo : FOO = struct
type t = int
let z : t = 0
let f (x:t) : int =
x + 1

end

module Test = struct
;; open Foo
;; print_int

(Foo.f Foo.z)
end

type t
val z : t
val f : t -> int

foo.mli

type t = int
let z : t = 0
let f (x:t) : int =
x + 1

foo.ml

;; open Foo
;; print_int

(Foo.f Foo.z)

test.ml

Files

