
Programming Languages
and Techniques

(CIS120)

Lecture 12

Partiality, Sequencing
Chapters 11, 12

Midterm 1

• Friday, September 27th

• Coverage: up to Monday, Sept. 23 (Chs. 1-10)
• Time: During lecture (001 @ 11am, 002 @ noon)

Last names: A – L Leidy Labs 10
Last names: M – Z Stitler (STIT) B6

• Review Session: TONIGHT 6:00-8:00pm Towne 100
• Review Material:
– old exams on the web site lecture schedule

• Makeup exam
– Monday, Sept. 30th

– sign up form on the web site

Announcements
• Dr. Sheth will have extra office hours

Thursday 4:00-6:00PM in Levine 264

• Homework 4
– Available soon after exam
– Due: Tuesday, Oct. 8th

Signature: Finite Map

module type MAP = sig

type ('k,'v) map

val empty : ('k,'v) map
val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
val remove : 'k -> ('k,'v) map -> ('k,'v) map
val mem : 'k -> ('k,'v) map -> bool
val get : 'k -> ('k,'v) map -> 'v
val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

Properties of Finite Maps
For any finite map m, key k, and value v:
1. get k (add k v m) = v
2. If k1 <> k2 and get k1 m = v1 then

get k1 (add k2 v2 m) = v1
3. if mem k m = true then

there is a v such that get k m = v
4. If mem k m = false then

get k m = v fails
5. mem k (add k v m) = true
6. mem k (remove k m) = false
And others…

CIS120

Completing module implementation

finiteMap.ml

Implementation: Ordered Lists
module Assoc : MAP = struct

(* Represent a finite map as a list of pairs. *)
(* Representation invariant: *)
(* - no duplicate keys (helps get, remove) *)
(* - keys are sorted (helps equals, helps get) *)

type ('k,'v) map = ('k * 'v) list

let empty : ('k,'v) map = []

let rec mem (key:'k) (m : ('k,'v) map) : bool =
begin match m with
| [] -> false
| (k,v)::rest ->
(key >= k) &&

((key = k) || (mem key rest))
end

;; run_test "mem test" (fun () -> mem "b" [("a",3); ("b",4)])

CIS120

Implementation: Ordered Lists
let rec get (key:'k) (m : ('k,'v) map) : 'v =
begin match m with
| [] -> failwith "key not found"
| (k,v)::rest ->
if key < k then failwith "key not found"
else if key = k then v
else get key rest

end

let rec remove (key:'k) (m : ('k,'v) map) : ('k,'v) map =
begin match m with
| [] -> []
| (k,v)::rest ->
if key < k then m
else if key = k then rest
else (k,v)::remove key rest

end

CIS120

Abstract types

• The interface restricts how other parts of the program can interact with
the data
– Type checking ensures that the only way to create a set is with the operations

in the interface
– If all operations preserve invariants, then all sets in the program must satisfy

invariants
– Example: all BST-implemented sets must satisfy the BST invariant, therefore the

lookup function can assume that its input satisfies the invariant

• Benefits:
– Safety: The other parts of the program can’t cause bugs in the set

implementation
– Modularity: It is possible to change the implementation without changing the

rest of the program

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants

Summary: Abstract Types
• Different programming languages have different ways of

letting you define abstract types

• At a minimum, this means providing:
– A way to specify (write down) an interface
– A means of hiding implementation details (encapsulation)

• In OCaml:
– Interfaces are specified using a signature or interface
– Encapsulation is achieved because the interface can omit information

• type definitions
• names and types of auxiliary functions

– Clients cannot mention values or types not named in the interface

Dealing with Partiality*

*A function is said to be partial if it is not defined for all inputs.

Which of these is a function that calculates the
maximum value in a (generic) list:

1.

2.

3.

4. None of the above

let rec list_max (l:'a list) : ’a =
begin match l with
| [] -> []
| h :: t -> max h (list_max t)
end

let rec list_max (l:'a list) : ’a =
fold max 0 l

let rec list_max (l:’a list) : ‘a =
begin match l with
| h :: t -> max h (list_max t)
end

Answer: 4

Quiz answer
• list_max isn’t defined for the empty list!

CIS120

let rec list_max (l:'a list) : ’a =
begin match l with
| [] -> failwith “empty list”
| [h] -> h
| h::t -> max h (list_max t)

end

Client of list_max

• Oops! string_of_max will fail if given []

• Not so easy to debug if string_of_max is written by one
person and list_max is written by another.

• Interface of list_max is not very informative
val list_max : int list -> int

CIS120

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
string_of_int (list_max x)

Solutions to Partiality: Option 1
• Abort the program:

failwith “an error message”
– Whenever it is called, failwith halts the program and reports

the error message it is given.
• This solution is appropriate whenever you know that a

certain case is impossible
– The compiler isn’t smart enough to figure out that the case is

impossible…
– Often happens when there is an invariant on a data structure
– failwith is also useful to “stub out” unimplemented parts of

your program.
• Languages (e.g. OCaml, Java) support exception handling

facilities to let programs recover from such failures.
– We'll talk about these when we get to Java

• Return a default or error value
– e.g. define list_max [] to be -1
– Error codes used often in C programs
– null used often in Java

• But…
– What if -1 (or whatever default you choose) really is the maximum value?
– Can lead to many bugs if the default isn’t handled properly by the callers.

– IMPOSSIBLE to implement generically!
• No way to generically create a sensible default value for every possible type

– Sir Tony Hoare, Turing Award winner and inventor of null calls it his
“billion dollar mistake”!

• Defaults should be avoided if possible

Solutions to Partiality: Option 2

Optional values

Solutions to Partiality: Option 3

Option Types
• Define a generic datatype of optional values:

• A “partial” function returns an option

• Contrast this with “null”, a “legal” return value of any type
– caller can accidentally forget to check whether null was used; results in

NullPointerExceptions or crashes
• Modern language designs (e.g. Apple's Swift, Mozilla's Rust)

distinguish between the type String (definitely not null) and String?
(optional string)

CIS120

type 'a option =
| None
| Some of 'a

let list_max (l:list) : int option = …

Example: list_max

• A function that returns the maximum value of a list as an
option (None if the list is empty)

CIS120

let list_max (l:'a list) : 'a option =
begin match l with
| [] -> None
| x::tl -> Some (fold max x tl)

end

Revised client of list_max

• string_of_max will never fail

• The type of list_max makes it explicit that a client must check
for partiality.
val list_max : int list -> int option

CIS120

(* string_of_max calls list_max *)
let string_of_max (l:int list) : string =
begin match (list_max l) with
| None -> “no maximum”
| Some m -> string_of_int m
end

What is the type of this function?

1. ‘a list -> ‘a

2. ‘a list -> ‘a list

3. ‘a list -> ‘b option

4. ‘a list -> ‘a option

5. None of the above

let head (x: ______) : ______ =
begin match x with
| [] -> None
| h :: t -> Some h
end

Answer: 4

What is the value of this expression?

1. [1 ; 0]

2. 1

3. [Some 1; None]

4. [None; None]

5. None of the above

let head (x: ‘a list) : ‘a option =
begin match x with
| [] -> None
| h :: t -> Some h
end in

[head [1]; head []]

Answer: 3

Revising the MAP interface

CIS120

module type MAP = sig

type ('k,'v) map

val empty : ('k,'v) map
val add : 'k -> 'v -> ('k,'v) map -> ('k,'v) map
val remove : 'k -> ('k,'v) map -> ('k,'v) map
val mem : 'k -> ('k,'v) map -> bool
val get : 'k -> ('k,'v) map -> 'v option
val entries : ('k,'v) map -> ('k * 'v) list
val equals : ('k,'v) map -> ('k,'v) map -> bool

end

get returns an optional 'v.
Now its type isn't a lie!

Commands, Sequencing and Unit

What is the type of print_string?

Sequencing Commands and Expressions
We can sequence commands inside expressions using ‘;’

– unlike in C, Java, etc., ‘;’ doesn’t terminate a statement it separates a
command from an expression

The distinction between commands & expressions is artificial.
• print_string is a function of type: string -> unit
• Commands are actually just expressions of type: unit
CIS120

let f (x:int) : int =
print_string "f called with ";
print_string (string_of_int x);
x + x

note the use of ‘;’ heredo not use ‘;’ here!

unit: the trivial type
• Similar to "void" in Java or C
• For functions that don't take any arguments

• Also for functions that don't return anything, such
as testing and printing functions a.k.a commands:

CIS120

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the boring type
• Actually, () is a value just like any other value (a 0-ary tuple)
• For functions that don't take any interesting arguments

• Also for functions that don't return anything interesting, such
as testing and printing functions a.k.a commands:

CIS120

let f () : int = 3
let y : int = f ()

val f : unit -> int
val y : int

(* run_test : string -> (unit -> bool) -> unit *)
;; run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

unit: the first-class type
• Can define values of type unit

CIS120

let x : unit = () val x : unit

let z = begin match x with
| () -> 4

end

fun () -> 3

• Can pattern match unit (even in function definitions)

;; if z <> 4 then
failwith "oops"
else ()

;; if z <> 4 then
failwith "oops"

• Is the result of an implicit else branch:

Sequencing Commands and Expressions
• Expressions of type unit are useful because of their

side effects – they "do" stuff
– e.g. printing, changing the value of mutable state

• We can think of ‘;’ as an infix function of type:
unit -> ‘a -> ‘a

CIS120

let f (x:int) : int =
print_string "f called with ";
print_string (string_of_int x);
x + x

note the use of ‘;’ heredo not use ‘;’ here!

CIS120

What is the type of f in the following program:

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. f is ill typed

let f (x:int) =
print_int (x + x)

Answer: 3

CIS120

What is the type of f in the following program:

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. f is ill typed

let f (x:int) =
(print_int x);
(x + x)

Answer: 4

