
Programming Languages
and Techniques

(CIS120)

Lecture 13

Mutable State & The Abstract Stack Machine
Chapters 14 &15

Announcements
• Midterm grading in progress
– Scores will be released after make-up exams

are finished (by Weds.)

• Homework 4
– now available now, due Tuesday next week

• Lecture Section 002:
– Dr. Sheth will be away Weds. & Fri.
– Dr. Zdancewic will give those lectures

Commands and Unit

unit: the first-class type
• Can define values of type unit

CIS120

let x : unit = () val x : unit

let z = begin match x with
| () -> 4

end

fun () -> 3

• Can pattern match unit (even in function definitions)

;; if z <> 4 then
failwith "oops"
else ()

;; if z <> 4 then
failwith "oops"

• Is the result of an implicit else branch:

Sequencing Commands and Expressions
• Expressions of type unit are useful because of their

side effects – they "do" stuff
– e.g. printing, changing the value of mutable state

• We can think of ‘;’ as an infix function of type:
unit -> ‘a -> ‘a

CIS120

let f (x:int) : int =
print_string "f called with ";
print_string (string_of_int x);
x + x

note the use of ‘;’ heredo not use ‘;’ here!

CIS120

What is the type of f in the following program:

1.unit -> int
2.unit -> unit
3.int -> unit
4.int -> int
5.f is ill typed

let f (x:int) =
print_int (x + x)

Answer: 3

CIS120

What is the type of f in the following program:

1.unit -> int
2.unit -> unit
3.int -> unit
4.int -> int
5.f is ill typed

let f (x:int) =
(print_int x);
(x + x)

Answer: 4

Records

Immutable Records
• Records are like tuples with named fields:

• The type rgb is a record with three fields: r, g, and b
– fields can have any types; they don’t all have to be the same

• Record values are created using this notation:

{field1=val1; field2=val2;…}

CIS120

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* some example rgb values *)
let red : rgb = {r=255; g=0; b=0;}
let blue : rgb = {r=0; g=0; b=255;}
let green : rgb = {r=0; g=255; b=0;}
let black : rgb = {r=0; g=0; b=0;}
let white : rgb = {r=255; g=255; b=255;}

Curly braces
around record.
Semicolons after
record components.

Field Projection
• The value in a record field can be obtained by using “dot”

notation: record.field

CIS120

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)
let average_rgb (c1:rgb) (c2:rgb) : rgb =
{r = (c1.r + c2.r) / 2;
g = (c1.g + c2.g) / 2;
b = (c1.b + c2.b) / 2;}

Why Pure Functional Programming?
• Simplicity

– small language: arithmetic, local variables,
recursive functions, datatypes, pattern matching,
generic types/functions and modules

– simple substitution model of computation

• Persistent data structures
– Nothing changes; retains all intermediate results
– Good for version control, fault tolerance, etc.

• Typechecker can give more helpful errors
– Once your program compiles, it needs less testing
– Options vs. NullPointerException

• Easier to parallelize and distribute
– No implicit interactions between parts of the

program.
– All of the behavior of a function is specified by its

arguments

CIS120

Mutable State

Mutable Record Fields
• By default, all record fields are immutable—once initialized,

they can never be modified.
• OCaml supports mutable fields that can be imperatively

updated by the “set” command: record.field <- val

CIS120

type point = {mutable x:int; mutable y:int}

let p0 = {x=0; y=0}
(* set the x coord of p0 to 17 *)
;; p0.x <- 17
;; print_endline ("p0.x = " ^ (string_of_int p0.x))

p0.x = 17

note the ‘mutable’ keyword

in-place update of p0.x

Record Update
• Functions can assign to mutable record fields
• Note that the return type of ‘<-’ is unit

– i.e., it is a command

• Note that the result type of shift is also unit
– i.e., shift is a user-defined command

CIS120

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)
let shift (p:point) (dx:int) (dy:int) : unit =
p.x <- p.x + dx;
p.y <- p.y + dy

Why Use Mutable State?
• Action at a distance

– allow remote parts of a program to
communicate / share information without
threading the information through all the points
in between

• Data structures with explicit sharing
– e.g. graphs
– without mutation, it is only possible to build

trees – no cycles
• Efficiency/Performance

– A few data structures have imperative
implementations with better asymptotic
efficiency than the best declarative version

• Re-using space (in-place update)
• Random-access data (arrays)
• Direct manipulation of hardware

– device drivers, displays, etc.

CIS120

Different views of imperative programming

Java (and C, C++, C#)

• Code is a sequence of
statements (a.k.a.
commands) that do
something, sometimes
using expressions to
compute values.

• References are mutable by
default, must be explicitly
declared to be constant

OCaml (and Haskell, etc.)

• Code is an expression that
has a value. Sometimes
computing that value has
other effects.

• References are immutable
by default, must be
explicitly declared to be
mutable

CIS120

CIS 120

CIS120

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) : int =
p1.x <- 17;
p1.x

ANSWER: 1

CIS 120

CIS120

What answer does the following function produce when called?

1. 17
2. something else
3. sometimes 17 and sometimes something else
4. f is ill typed

type point = {mutable x:int; mutable y:int}

let f (p1:point) (p2:point) : int =
p1.x <- 17;
p2.x <- 42;
p1.x

ANSWER: 3

The Challenge of Mutable State: Aliasing
What does this function return?

CIS120

let f (p1:point) (p2:point) : int =
p1.x <- 17;
p2.x <- 42;
p1.x

(* Consider this call to f: *)
let p0 = {x=0; y=0} in
f p0 p0

Two identifiers are said to be aliases if they both name the same mutable
record. Inside f, the identifiers p1 and p2 might or might not be aliased,
depending on which arguments are passed in.

SEE THE COURSE NOTES FOR MORE ON THIS EXAMPLE

Opening a Whole New Can of Worms*

CIS120

*t-shirt courtesy of
ahrefs.com

Modeling State

Location, Location, Location!

CIS120

Need for a New Computation Model
• A simple substitution model works well for

pure value oriented programming
– "Observable" behavior of a value is completely

determined by its structure
– Pure functions are referentially transparent:

two different calls to the same function with
the same arguments always yield the same
results

– These properties justify the the "replace equals
by equals" model

• With mutable state…
– The location of values matters, not just their

structure
– Results returned by functions are not fully

determined by their arguments (can also
depend on “hidden” mutable state)

CIS120

Abstract Stack Machine
• Three “spaces”

– workspace
• the expression the computer is

currently working on simplifying
– stack

• temporary storage for let bindings
and partially simplified expressions

– heap
• storage area for large data structures

• Initial state:
– workspace contains whole program
– stack and heap are empty

• Machine operation:
– In each step, choose “next part” of

the workspace expression and
simplify it

– (Sometimes this will also involve
changes to the stack and/or heap)

– Stop when there are no more
simplifications to be done

CIS120

HeapStackWorkspace

Abstract stack machine

HeapStack

Nil

Values and References
A value is either:
• a primitive value like an integer, or,
• a reference to a location in the heap
A reference is the address (location) of a piece of data in the

heap. We draw a reference value as an “arrow”:
– The start of the arrow is the reference itself (i.e. the address)
– The arrow “points” to the value located at this address

CIS120

Cons 3This is a reference
value

(the arrow itself). It points to
this heap location

containing a Cons cell

This reference value
points to the heap

location of a Nil cell

References as an Abstraction
• In a real computer, the memory consists of an array of 32-bit

words, numbered 0 … 232-1 (for a 32-bit machine)
– A reference is just an address that tells you where to look up a value
– Data structures are usually laid out in contiguous blocks of memory
– Constructor tags are just numbers chosen by the compiler

e.g. Nil = 42 and Cons = 120120120

CIS120

Addresses 32-bit Values
0 ...
1 ...
2 4294967291
3 ...

... ...
4294967290 ...
4294967291 120120120
4294967292 3
4294967293 4294967295
4294967294 ...
4294967295 42

The “real”
heap.

Nil

`
Cons 3

How we
picture it.

The ASM:
Simplifying variables, operators,

let expressions, and if expressions

CIS120

Simplification

let x = 10 + 12 in
let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

What to simplify next?
• At each step, the ASM finds the left-most ready subexpression in the

workspace
• An expression involving a primitive operator (eg “+”) is ready if all its

arguments are values
– Expression is replaced with its result

• A let expression let x : t = e in body is ready if e is a value
– A new binding for x to e is added at the end of the stack
– let expression is replaced with body in the workspace

• A variable is always ready
– The variable is replaced by its binding in the stack, searching from the most

recent bindings

• A conditional expression if e then e1 else e2 is ready if e is
either true or false
– The workspace is replaced with either e1 (if e is True) or e2 (if e is False)

CIS120

Simplification

let x = 10 + 12 in
let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let x = 22 in
let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let x = 22 in
let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

Simplification

let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 2 + x in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

x is not a value: so look it up in the stack

Simplification

let y = 2 + 22 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 2 + 22 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 24 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

let y = 24 in
if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if x > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Looking up x in the stack proceeds from most recent
entries to the least recent entries. Note that the
“top” (most recent part) of the stack is drawn toward
the bottom of the diagram.

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if 22 > 23 then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

if false then 3 else 4

Workspace Stack Heap

CIS120

x 22

y 24

Simplification

4

Workspace Stack Heap

CIS120

x 22

y 24

DONE!

CIS120

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let w = 2 + z in
w

z 22

w 2 + z

Stack

z 20

w 22

Stack

w 22

Stack

w 22

z 20

Stack

1. 2. 3. 4.

ANSWER: 2

CIS 120

CIS120

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let z = 2 + z in
z

z 22

z 20

Stack

z 20

z 22

Stack

z 22

Stack

z 22

z 22

Stack

1. 2. 3. 4.

ANSWER: 2

CIS 120

• The reason for introducing the ASM model is to make heap
locations and sharing explicit.
– Now we can say what it means to mutate a heap value in place.

• We draw a record in the heap like this:
– The doubled outlines indicate that those

cells are mutable
– Everything else is immutable

Mutable Records

CIS120

type point = {mutable x:int; mutable y:int}

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int = (p2.x <- 17; p1.x)

x 1

y 1

A point record
in the heap.

Allocate a Record

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

Allocate a Record

let p1 : point =
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Let Expression

let p1 : point = .
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Push p1

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point =
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Let Expression

let p2 : point = .
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Push p2

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Note: p1 and p2 are references to the same heap record.
They are aliases – two different names for the same thing.

Look Up ‘p2’

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Look Up ‘p2’

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

Sequence ‘;’ Discards Unit

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Let Expression

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Push ans
Workspace Stack Heap

CIS120

p1

p2

ans 17

DONE!

x 17

y 1

CIS120

What answer does the following function produce when called?

1. 17
2. 42
3. sometimes 17 and sometimes 42
4.f is ill typed

let f (p1:point) (p2:point) : int =
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
z

Answer: 1

CIS120

What do the Stack and Heap look like after simplifying the following code on the
workspace?

let p1 = {x=0; y=0} in
let p2 = p1 in
p1.x <- 17;
let z = p1.x in
p2.x <- 42;
p1.x

p1

Stack

1.

Heap

p2

z 17

x 42

y 0
p1

Stack Heap

p2

z 17

x 17

y 0

x 42

y 0

2.

Answer: 1

