
Programming Languages
and Techniques

(CIS120)

Lecture 14

ASM & Equality
Lecture notes: Chapter 16

Announcements

• Midterm grading in progress
– Scores will be released soon

• Homework 4
– due Tuesday next week

• Lecture Section 002:
– Dr. Sheth will be away Weds. & Fri.
– Dr. Zdancewic will give those lectures

Review: Abstract Stack Machine
• Three “spaces”

– workspace
• the expression the computer is

currently working on simplifying
– stack

• temporary storage for let bindings
and partially simplified expressions

– heap
• storage area for large data structures

• Initial state:
– workspace contains whole program
– stack and heap are empty

• Machine operation:
– In each step, choose next part of the

workspace expression and simplify it
– (Sometimes this will also involve

changes to the stack and/or heap)
– Stop when there are no more

simplifications to be done
CIS120

HeapStackWorkspace

HeapStack

Nil

Review: Values and References
A value is either:
• a primitive value like an integer, or,
• a reference to a location in the heap
A reference is the address of a piece of data in the heap. We

draw a reference value as an “arrow”:
– The start of the arrow is the reference itself (i.e. the address).
– The arrow “points” to the value located at the reference’s address.

CIS120

Cons 3This is a reference
value

(the arrow itself). It points to
this heap location

containing a Cons cell

This reference value
points to the heap

location of a Nil cell

Review: Example

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

Allocate a Record

let p1 : point = {x=1; y=1;}
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

Allocate a Record

let p1 : point =
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Let Expression

let p1 : point = .
let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

x 1

y 1

Push p1

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point = p1
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Look Up ‘p1’

let p2 : point =
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Let Expression

let p2 : point = .
let ans : int =

p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1 x 1

y 1

Push p2

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Note: p1 and p2 are references to the same heap record.
They are aliases – two different names for the same thing.

Look Up ‘p2’

let ans : int =
p2.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Look Up ‘p2’

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
.x <- 17; p1.x

Workspace Stack Heap

CIS120

p1

p2

x 1

y 1

Assign to x field

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

Sequence ‘;’ Discards Unit

let ans : int =
(); p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
p1.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Look Up ‘p1’

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
.x

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Project the ‘x’ field

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Let Expression

let ans : int =
17

Workspace Stack Heap

CIS120

p1

p2

x 17

y 1

Push ans
Workspace Stack Heap

CIS120

p1

p2

ans 17

DONE!

x 17

y 1

CIS 120

CIS120

What does the Stack look like after simplifying the
following code on the workspace?

let z = 20 in
let z = 2 + z in
z

z 22

z 20

Stack

z 20

z 22

Stack

z 22

Stack

z 22

z 22

Stack

1. 2. 3. 4.

ANSWER: 2

References and Equality

= vs. ==

Stack Heap

Reference Equality
• Suppose we have two counters. How do we know whether

they share the same internal state?
– type counter = { mutable count : int }
– We could increment one and see whether the other’s value changes.
– But we could also just test whether the references alias directly.

• Ocaml uses ‘==‘ to mean reference equality:
– two reference values are ‘==‘ if they point to the same object in the

heap; so:

CIS120

r1

r2

r3

r2 == r3

not (r1 == r2)

r1 = r2

count 0

count 0

Structural vs. Reference Equality
• Structural (in)equality: v1 = v2 v1 <> v2

– recursively traverses over the structure of the data, comparing the two
values’ components for structural equality

– function values are never structurally equivalent to anything
– structural equality can go into an infinite loop (on cyclic structures)
– appropriate for comparing immutable datatypes

• Reference (in)equality: v1 == v2 v1 != v2
– Only looks at where the two references point in the heap
– function values are only equal to themselves
– equates strictly fewer things than structural equality
– appropriate for comparing mutable datatypes

CIS120

CIS120

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0; } in
let p2 : point = p1 in

p1 = p2

Answer: true

CIS120

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0; } in
let p2 : point = p1 in

p1 == p2

Answer: true

CIS120

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0; } in
let p2 : point = { x = 0; y = 0; } in

p1 == p2

Answer: false

CIS120

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0; } in
let p2 : point = { x = 0; y = 0; } in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 = l2

Answer: true

CIS120

What is the result of evaluating the following expression?

1. true
2. false
3. runtime error
4. compile-time error

let p1 : point = { x = 0; y = 0; } in
let p2 : point = p1 in
let l1 : point list = [p1] in
let l2 : point list = [p2] in

l1 == l2

Answer: false

Ah… Refs!
OCaml provides syntax for working with updatable references:

CIS120

type 'a ref = {mutable contents:'a}

ref e means {contents = e}

e1 := e2 means (e1).contents <- e2

!e means (e).contents

OCaml
"syntactic sugar" equivalent expressions

"is defined to be"
(not Ocaml syntax)

has type t ref when (e : t)

has type unit when
(e1 : t ref) and (e2 : t)

has type t when (e : t ref)

type constraints

Comparison To Java (or C, C++, …)

int f() {
int x = 3;
x = x + 1;
return x;

}

• x has type int
• meaning on left of =

different than on right
• implicit dereference

let f () : int =
let x = ref 3 in
x := !x + 1;
!x

• x has type (int ref)
• use := for update
• explicit dereference

CIS120

Java OCaml

ASM:
Simplifying lists and user-defined

datatypes using the heap

CIS120

Simplification

[1;2;3]

Workspace Stack Heap

CIS120

1::2::3::[]

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

CIS120

type ‘a list =
| Nil
| Cons of ‘a * ‘a list

For uniformity, we’ll
pretend lists are declared
like this:

Simplification

Cons (1,Cons (2,Cons (3,Nil)))

Workspace Stack Heap

CIS120

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap

CIS120

Nil

Simplification

Cons (1,Cons (2,Cons (3,)))

Workspace Stack Heap

CIS120

Nil

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap

CIS120

Nil

Cons 3

Simplification

Cons (1,Cons (2,))

Workspace Stack Heap

CIS120

Nil

Cons 3

Simplification

Cons (1,)

Workspace Stack Heap

CIS120

Nil

Cons 3

Cons 2

Simplification

Cons (1,)

Workspace Stack Heap

CIS120

Nil

Cons 3

Cons 2

Simplification
Workspace Stack Heap

CIS120

Nil

Cons 3

Cons 2

Cons 1

DONE!

CIS120

What do the Stack and Heap look like after simplifying the
following code on the workspace?

let z = Cons (1, Nil) in
let w = Cons (2, z) in

w

z

w

Stack

z

w

Stack

1. 2.

Heap
Nil

Cons 1

Cons 2

Heap
Nil

Cons 1

Nil

Cons 1

Cons 2ANSWER: 1

ASM:
Simplifying functions

CIS120

Function Simplification

let add1 (x : int) : int =
x + 1 in

add1 (add1 0)

Workspace Stack Heap

CIS120

Function Simplification

let add1 (x : int) : int =
x + 1 in

add1 (add1 0)

Workspace Stack Heap

CIS120

First step: replace
declaration of add1 with
more primitive version

Function Simplification

let add1 : int -> int =
fun (x:int) -> x + 1 in

add1 (add1 0)

Workspace Stack Heap

CIS120

Function Simplification

let add1 : int -> int =
fun (x:int) -> x + 1 in

add1 (add1 0)

Workspace Stack Heap

CIS120

Function Simplification

let add1 = in
add1 (add1 0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1

Function Simplification

let add1 = in
add1 (add1 0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1

Function Simplification

add1 (add1 0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Function Simplification

add1 (add1 0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Function Simplification

add1 (0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Function Simplification

add1 (0)

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Here comes the
crucial step…!

Do the Call, Saving the Workspace

x+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 ()

x 0

Note the saved workspace and pushed function argument
• compare with the workspace on the previous slide
• the name ‘x’ comes from the parameter name in the heap

The new workspace contains the body of the function

Function Simplification

x+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

0+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

0+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 (add1 0)

x 0

add1 ()

Function Simplification

1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 (add1 0)

x 0

add1 ()

POP!
The workspace has been
reduced to a value, but
there is still some
computation left to
finish on the stack

Function Simplification

add1 1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

See how the ASM restored the saved workspace,
replacing its `hole’ with the value computed into
the old workspace. (Compare with previous slide.)

Function Simplification

add1 1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Now we have to do it all
over again for the second
invocation of add1…

Function Simplification

1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Function Simplification

1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

Function Simplification

x+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

x 1

(____)

Function Simplification

x+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 1

x 1

(____)

Function Simplification

1+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 1

x 1

(____)

Function Simplification

1+1

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 1

x 1

(____)

Function Simplification

2

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

add1 1

x 1

(____)

POP!

Function Simplification

2

Workspace Stack Heap

CIS120

fun (x:int) -> x + 1add1

DONE!

Simplifying Functions
• A function definition “let f (x1:t1)…(xn:tn) = e in body” is always

ready.
– It is simplified by replacing it with “let f = fun (x:t1)…(x:tn) = e in body”

• A function “fun (x1:t1)…(xn:tn) = e” is always ready.
– It is simplified by moving the function to the heap and replacing the

function expression with a pointer to that heap data.

• A function call is ready if the function and its arguments are
all values
– it is simplified by

• saving the current workspace contents on the stack
• adding bindings for the function’s parameter variables (to the actual

argument values) to the end of the stack
• copying the function’s body to the workspace

CIS120

Function Completion
When the workspace contains just a single value, we pop the

stack by removing everything back to (and including) the last
saved workspace contents.

The value currently in the workspace is substituted for the
function application expression in the saved workspace
contents, which are put back into the workspace.

If there aren’t any saved workspace contents in the stack, the
whole computation is finished and the value in the workspace
is its final result.

CIS120

ASM: Simplifying
pattern matching and recursion

CIS120

Example

let rec append (l1: 'a list) (l2: 'a list) : 'a list =
begin match l1 with
| Nil -> l2
| Cons(h, t) -> Cons(h, append t l2)
end in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil)) in

append a b

CIS120

Simplification

let rec append (l1: 'a list)
(l2: 'a list) : 'a list =

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, append t l2)
end in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

CIS120

Function Definition

let rec append (l1: 'a list)
(l2: 'a list) : 'a list =

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, append t l2)
end in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

CIS120

Rewrite to a “fun”

let rec append =
fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, append t l2)
end in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

CIS120

Function Expression

let rec append =
fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, append t l2)
end in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

CIS120

Copy to the Heap, Replace w/Reference

let append =
in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap
fun (l1: 'a list)

(l2: 'a list) ->
begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

CIS120

NOTE: The heap structure that we
build for the recursive function
replaces the the use of append in
the body with a reference.

This backpatching is enabled by
the ‘rec’ keyword. The code for
this function refers to itself.

Let Expression

let append =_______
in

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

Note that the reference to a function in the heap is a value.

CIS120

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Create a Stack Binding

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Nil cell

let a = Cons(1, Nil) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Nil cell

let a = Cons(1,) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let a = Cons(1,) in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let a = in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Let Expression

let a = in
let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap
fun (l1: 'a list)

(l2: 'a list) ->
begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

append

CIS120

Nil

Cons 1

Create a Stack Binding

let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap
fun (l1: 'a list)

(l2: 'a list) ->
begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

append

CIS120

Nil

Cons 1

a

Allocate a Nil cell

let b = Cons(2, Cons(3, Nil))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Nil cell

let b = Cons(2, Cons(3,))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let b = Cons(2, Cons(3,))
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let b = Cons(2,)
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let b = Cons(2,)
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

let b =
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Let Expression

let b =___
in
append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Create a Stack Binding

append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘append’

append a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘append’

a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘a’

a b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘a’

b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘b’

b

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘b’
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Do the Function call

()

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

()

Call (1): Save Workspace
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

()

push l1
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

()

push l2
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Install Function Body in Workspace

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Note: the backpactched
reference to ‘append’ comes
with the code body.

Lookup l1

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

The call is complete…
continue evaluating.

Lookup l1

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Match Expression

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Nil case Doesn’t Match

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

?
fun (l1: 'a list)

(l2: 'a list) ->
begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Cons case Does Match

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

?

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Simplify the Branch: push h, t

Cons(h, t l2)

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘h’

Cons(h, t l2)

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘h’

Cons(1, t l2)

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘t’

Cons(1, (t l2))

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘t’

Cons(1, (l2))

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘l2’

Cons(1, (l2))

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘l2’

Cons(1, ())

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Do the Function Call

Cons(1, ())

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Save the Workspace; push l1, l2

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Note: here we’ve done
all of the function call
steps at once.

Lookup ‘l1’

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘l1’

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Match Expression

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

The Nil case Matches

begin match with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

?
fun (l1: 'a list)

(l2: 'a list) ->
begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Simplify the Branch (nothing to push)

l2

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘l2’

l2

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Lookup ‘l2’
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Done! Pop stack to last Workspace
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons(1,())

l1

l2

POP!

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Done! Pop stack to last Workspace

Cons(1,)

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

(Note that the “returned”
value fills in the ‘hole’ of
the saved workspace…)

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell

Cons(1,)

Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Allocate a Cons cell
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons 1

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Done! Pop stack to last Workspace
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

()

l1

l2

h 1

t

Cons 1

POP!

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Done! (PHEW!)
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

Cons 1

DONE!

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Done! (PHEW!)
Workspace Stack Heap

append

CIS120

Nil

Cons 1

a

Nil

Cons 3

Cons 2

b

Cons 1

Note that the answer [1;2;3] has the same
heap cells for its tail as the list ‘b’… but, it does
not share any cells with ‘a’.

fun (l1: 'a list)
(l2: 'a list) ->

begin match l1 with
| Nil -> l2
| Cons(h, t) ->

Cons(h, t l2)
end

Simplifying Match
• A match expression
begin match e with
| pat1 -> branch1
| …
| patn -> branchn
end
is ready if e is a value
– Note that e will always be a pointer to a constructor cell in the heap
– This expression is simplified by finding the first pattern pati that

matches the cell and adding new bindings for the pattern variables (to
the parts of e that line up) to the end of the stack

– replacing the whole match expression in the workspace with the
corresponding branchi

CIS120

Putting State to Work:
Mutable Queues

A design problem
Suppose you are implementing a website for constituents to submit
questions to their political representatives. To be fair, you would like
to deal with questions in first-come, first-served order. How would
you do it?

• Understand the problem
– Need to keep track of pending questions, in the order in which they were

submitted

• Define the interface
– Need a data structure to store questions
– Need to add questions to the end of the queue
– Need to allow responders to retrieve questions from the beginning of the

queue
– Both kinds of access must be efficient to handle large volume

CIS120

(Mutable) Queue Interface

CIS120

module type QUEUE =
sig
(* abstract type *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Determine if a queue is empty *)
val is_empty : 'a queue -> bool

(* Add a value to the end of a queue *)
val enq : 'a -> 'a queue -> unit

(* Remove the first value (if any) and return it *)
val deq : 'a queue -> 'a

end

Q: We can tell, just looking at
this interface, that it is for a
MUTABLE data structure. How?

Since queues are mutable, we
must allocate a new one every
time we need one.

A: Adding an element
to a queue returns
unit because it
modifies the given
queue.

Specify the behavior via test cases

CIS120

let test () : bool =
let q : int queue = create () in
enq 1 q;
enq 2 q;
1 = deq q

;; run_test "queue test 1" test

let test () : bool =
let q : int queue = create () in
enq 1 q;
enq 2 q;
let _ = deq q in
2 = deq q

;; run_test "queue test 2" test

Implementing Linked Queues

Representing links

Data Structure for Mutable Queues

CIS 120

type 'a qnode = {
v: 'a;
mutable next : 'a qnode option

}

type 'a queue = { mutable head : 'a qnode option;
mutable tail : 'a qnode option }

There are two parts to a mutable queue:
1. the “internal nodes” of the queue, with links from one

to the next
2. a record with links to the head and tail nodes

All of the links are optional so that the queue can be empty.

Queues in the Heap

head
tail

None

None

An empty queue

head
tail

Some

Some

v 1

next None

A queue with one element

head
tail

Some

Some

v 1

next
v 2

next
NoneSome

A queue with two elements
CIS 120

Visual Shorthand: Abbreviating Options

head
tail

An empty queue

A queue with one element

A queue with three elements

head
tail

v 1

next

None
means

Some
ValVal means

head
tail

v 1

next
v 2

next
v 3

next

*Note: Ocaml can optimize "nullary" constructors like Nil, None,
Empty so that they aren't allocated in the heap. This is why

None == None
even though not ((Some x) == (Some x)).
Be careful with equality and options.

*

“Bogus” values of type int queue
head
tail

head is None, tail is Some

v 1

next
head
tail

v 1

next

head is Some, tail is None

tail is not reachable from the head

head
tail

v 1

next
v 2

next

tail doesn’t point to the last element of the queue

head
tail

v 1

next
v 2

next
v 2

next

Given the queue datatype shown below, is it possible to create a cycle of
references in the heap. (i.e. a way to get back to the same place by following
references.)

1. yes
2. no
3. not sure

type 'a qnode = {
v: 'a;
mutable next : 'a qnode option

}

type 'a queue = { mutable head : 'a qnode option;
mutable tail : 'a qnode option }

Answer: 1

head
tail

v 1

next

Cyclic int queue values

head
tail

v 1

next
v 2

next

head
tail

v 1

next

(And infinitely many more…)

Linked Queue Invariants
• Just as we imposed some restrictions on which trees count as

legitimate Binary Search Trees, Linked Queues must also satisfy
representation invariants:

• We can prove that these properties suffice to rule out all of the
“bogus” examples.

• Each queue operation may assume that these invariants hold of its
inputs, and must ensure that the invariants hold when it’s done.

Either:
(1) head and tail are both None (i.e. the queue is empty)

or
(2) head is Some n1, tail is Some n2 and

- n2 is reachable from n1 by following ‘next’ pointers
- n2.next is None

