
Programming Languages
and Techniques

(CIS120)

Lecture 15

Queues
Lecture notes: Chapter 16

Announcements
• Homework 4
– due Tuesday, October 8th at 11:59 pm

• No Recitations Sections Next Week
– Fall Break!

• Midterm 1 is graded
– Solutions available on the course web site

(see the schedule)
– Submit regrade requests via Gradescope

before Thursday, October 10th.

Midterm 1 Analysis

CIS120

Median: 74
Mean: 73
Std.Dev: 13.4

Putting State to Work:
Mutable Queues

A design problem
Suppose you are implementing a website for constituents to submit
questions to their political representatives. To be fair, you would like
to deal with questions in first-come, first-served order. How would
you do it?

• Understand the problem
– Need to keep track of pending questions, in the order in which they were

submitted

• Define the interface
– Need a data structure to store questions
– Need to add questions to the end of the queue
– Need to allow responders to retrieve questions from the beginning of the

queue
– Both kinds of access must be efficient to handle large volume

CIS120

(Mutable) Queue Interface

CIS120

module type QUEUE =
sig
(* abstract type *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Determine if a queue is empty *)
val is_empty : 'a queue -> bool

(* Add a value to the end of a queue *)
val enq : 'a -> 'a queue -> unit

(* Remove the first value (if any) and return it *)
val deq : 'a queue -> 'a

end

Q: We can tell, just looking at
this interface, that it is for a
MUTABLE data structure. How?

Since queues are mutable, we
must allocate a new one every
time we need one.

A: Adding an element
to a queue returns
unit because it
modifies the given
queue.

Specify the behavior via test cases

CIS120

let test () : bool =
let q : int queue = create () in
enq 1 q;
enq 2 q;
1 = deq q

;; run_test "queue test 1" test

let test () : bool =
let q : int queue = create () in
enq 1 q;
enq 2 q;
let _ = deq q in
2 = deq q

;; run_test "queue test 2" test

Implementing Linked Queues

Representing links

Data Structure for Mutable Queues

CIS 120

type 'a qnode = {
v: 'a;
mutable next : 'a qnode option

}

type 'a queue = { mutable head : 'a qnode option;
mutable tail : 'a qnode option }

There are two parts to a mutable queue:
1. the “internal nodes” of the queue, with links from one

to the next
2. a record with links to the head and tail nodes

All of the links are optional so that the queue can be empty.

Queues in the Heap

head
tail

None

None

An empty queue

head
tail

Some

Some

v 1

next None

A queue with one element

head
tail

Some

Some

v 1

next
v 2

next
NoneSome

A queue with two elements
CIS 120

Visual Shorthand: Abbreviating Options

head
tail

An empty queue

A queue with one element

A queue with three elements

head
tail

v 1

next

None
means

Some
ValVal means

head
tail

v 1

next
v 2

next
v 3

next

*Note: Ocaml can optimize "nullary" constructors like Nil, None,
Empty so that they aren't allocated in the heap. This is why

None == None
even though not ((Some x) == (Some x)).
Be careful with equality and options.

*

“Bogus” values of type int queue
head
tail

head is None, tail is Some

v 1

next
head
tail

v 1

next

head is Some, tail is None

tail is not reachable from the head

head
tail

v 1

next
v 2

next

tail doesn’t point to the last element of the queue

head
tail

v 1

next
v 2

next
v 2

next

Given the queue datatype shown below, is it possible to create a cycle of
references in the heap. (i.e. a way to get back to the same place by following
references.)

1. yes
2. no
3. not sure

type 'a qnode = {
v: 'a;
mutable next : 'a qnode option

}

type 'a queue = { mutable head : 'a qnode option;
mutable tail : 'a qnode option }

Answer: 1

head
tail

v 1

next

Cyclic int queue values

head
tail

v 1

next
v 2

next

head
tail

v 1

next

(And infinitely many more…)

Linked Queue Invariants
• Just as we imposed some restrictions on which trees count as

legitimate Binary Search Trees, Linked Queues must also satisfy
representation invariants:

• We can prove that these properties suffice to rule out all of the
“bogus” examples.

• Each queue operation may assume that these invariants hold of its
inputs, and must ensure that the invariants hold when it’s done.

Either:
(1) head and tail are both None (i.e. the queue is empty)

or
(2) head is Some n1, tail is Some n2 and

- n2 is reachable from n1 by following ‘next’ pointers
- n2.next is None

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next
v 2

next

Either:
(1) head and tail are both None (i.e. the queue is empty)

or
(2) head is Some n1, tail is Some n2 and

- n2 is reachable from n1 by following ‘next’ pointers
- n2.next is None

ANSWER: No

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next

Either:
(1) head and tail are both None (i.e. the queue is empty)

or
(2) head is Some n1, tail is Some n2 and

- n2 is reachable from n1 by following ‘next’ pointers
- n2.next is None

ANSWER: Yes

Is this a valid queue?

1. Yes

2. No

head
tail

v 1

next

Either:
(1) head and tail are both None (i.e. the queue is empty)

or
(2) head is Some n1, tail is Some n2 and

- n2 is reachable from n1 by following ‘next’ pointers
- n2.next is None

ANSWER: Yes

Implementing Linked Queues

q.ml

create and is_empty

• create establishes the queue invariants
– both head and tail are None

• is_empty assumes the queue invariants
– it doesn’t have to check that q.tail is None

(* create an empty queue *)
let create () : 'a queue =

{ head = None;
tail = None }

(* determine whether a queue is empty *)
let is_empty (q:'a queue) : bool =

q.head = None

enq

• The code for enq is informed by the queue invariant:
– either the queue is empty, and we just update head and tail, or
– the queue is non-empty, in which case we have to “patch up” the

“next” link of the old tail node to maintain the queue invariant.

(* add an element to the tail of a queue *)
let enq (x: 'a) (q: 'a queue) : unit =

let newnode = {v=x; next=None} in
begin match q.tail with
| None ->

q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Calling Enq on a non-empty queue

enq 2 q

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

enq 2 q

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

2 q

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

2 q

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

2

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

(2)

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

Calling Enq on a non-empty queue

let newnode = {v=x; next=None} in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=x; next=None} in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=2; next=None} in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = {v=2; next=None} in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

Calling Enq on a non-empty queue

let newnode = in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

Note: there is no “Some bubble”: this
is a qnode, not a qnode option.

Calling Enq on a non-empty queue

let newnode = in
begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

Calling Enq on a non-empty queue

begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match q.tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match .tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match .tail with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

Calling Enq on a non-empty queue

begin match with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

?

Calling Enq on a non-empty queue

begin match with
| None ->
q.head <- Some newnode;
q.tail <- Some newnode

| Some n ->
n.next <- Some newnode;
q.tail <- Some newnode

end

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

?

Calling Enq on a non-empty queue

n.next <- Some newnode;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Note: n points to a
qnode, not a
qnode option.

Calling Enq on a non-empty queue

n.next <- Some newnode;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some newnode;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some newnode;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some ;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- Some ;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- ;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.next <- ;
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

();
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

();
q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

q.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <- Some newnode

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <- Some

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <- Some .

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <-

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

.tail <- .

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

()

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

n

Calling Enq on a non-empty queue

()

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

()

x 2

q

v 2

next

newnode

nPOP!

Calling Enq on a non-empty queue

()

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

v 2

next

DONE!

Calling Enq on a non-empty queue

()

Workspace Stack Heap
enq

q

fun (x: 'a) (q: 'a queue) ->
let newnode = {v=x; next=None}

in begin match q.tail with
| None -> …
| Some n -> …

end

head
tail

v 1

next

v 2

next

Notes:
- the enq function imperatively updated
the structure of q

- the new structure still satisfies the
queue invariants

Challenge problem - buggy deq
type 'a qnode = { v: 'a; mutable next:'a qnode option }

type 'a queue = { mutable head : 'a qnode option;
mutable tail : 'a qnode option }

(* remove element at the head of queue and return it *)
let deq (q: 'a queue) : 'a =
begin match q.head with
| None ->

failwith "empty queue"
| Some n ->

q.head <- n.next;
n.v

end

Which test case shows the bug?
1.

2.

4. All of them

let q = create () in
enq 1 q;
1 = deq q

let q = create () in
enq 1 q;
enq 2 q;
ignore (deq q);
2 = deq q

3.
let q = create () in
enq 1 q;
ignore (deq q);
enq 2 q;
2 = deq q

ANSWER: 3

deq

• The code for deq must also “patch pointers” to maintain the queue
invariant:
– The head pointer is always updated to the next element in the queue.
– If the removed node was the last one in the queue, the tail pointer must be

updated to None

(* remove an element from the head of the queue *)
let deq (q: 'a queue) : 'a =
begin match q.head with
| None ->

failwith "empty queue"
| Some n ->

q.head <- n.next;
if n.next = None then q.tail <- None;
n.v

end

