
Programming Languages
and Techniques

(CIS120)

Lecture 18

Objects, GUI Library Design
Chapters 17 & 18

Announcements
• HW5: GUI programming
– Due: Tuesday, October 22nd at 11:59 pm
– The project is structured as tasks, not files

(one task may touch multiple files)
– Please try Task 0 TONIGHT (if you haven't already)

• To shake out any problems early...

2

Objects and GUIs

Where we’re going…
• HW 5: Build a GUI library and client application from scratch

in OCaml

• Goals:
– Practice with first-class functions and hidden state
– Bridge to object-oriented programming in Java
– Illustrate the event-driven programming model
– Give a feel for how GUI libraries (like Java’s Swing) are put

together
– Apply everything we’ve seen so far to do some pretty

serious programming

4

Building a GUI library & application

6

Step #1: Understand the Problem
• There are two separate parts of this homework: an

application (Paint) and a GUI library used to build the
application

• What are the concepts involved in GUI libraries and how do
they relate to each other?

• How can we separate the various concerns on the project?

• Goal: The library should be reusable. It should be useful for
other applications besides Paint.

7

Gctx

Project Architecture

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Step #2, Interfaces: Project Architecture*
*Subsequent program snippets will be color-coded according to this diagram

8

Starting point: The low-level Graphicsmodule

• OCaml’s Graphics* library provides very basic primitives for:
– Creating a window
– Drawing various shapes: points, lines, text, rectangles, circles, etc.
– Getting the mouse position, whether the mouse button is pressed,

what key is pressed, etc.
– See: https://ocaml.github.io/graphics/graphics/Graphics/

• How do we go from that to a full-blown GUI library?

*Note: We actually have two Graphics libraries, one for running "natively" and one for running in the browser.
We have configured the project so that you can refer to either one using the module alias Graphics.

For use within the browser, we use a tool called js_of_ocaml that translates OCaml-compiled bytecode into
javascript. There are some rendering differences between the native and browser versions.

9

https://ocaml.github.io/graphics/graphics/Graphics/

GUI Library Design

Abstractions for graphical interfaces

Gctx

Interfaces: Project Architecture*

Paint

Native
graphics
library

GUI
Library

Application

Widget

OCaml’s Graphics Module (graphics.cma)

Eventloop

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

11

*The background color of code in the following slides
is color coded according to this picture.

GUI terminology – Widget*
• Basic element of GUIs: examples include buttons, checkboxes,

windows, textboxes, canvases, scrollbars, labels
• Every widget

– has a size
– knows how to display itself
– knows how to react to events

like mouse clicks

• May be composed of other sub-widgets, for laying out
complex interfaces

*Each GUI library uses its own naming convention for what we call “widgets.” Java Swing calls
them “Components”; iOS UIKit calls them “UIViews”; WINAPI, GTK+, X11’s widgets, etc….

Hello World

12

type widget = {
repaint: unit -> unit;
handle: event -> unit;
size: unit -> int*int

}

Simplified!

A “Hello World” application
(* Create some simple label (string) widgets *)
let l1 : widget = label "Hello"
let l2 : widget = label "World"
(* Compose them horizontally, adding some borders *)
let h : widget =

border (hpair (border l1)
(hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

swdemo.ml

13

Module: EventLoop

Top-level driver

Gctx.ml

GUI Architecture
• The eventloop is the main "driver" of a GUI application

– For now: focus on how widgets are drawn on the screen
– Later: deal with event handling

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The event
loop manages
the top-level
interactions
and causes
the display
to be repainted.

15

• Main loop for all GUI applications (simplified)
– “run” function takes top-level widget w as argument, containing all

other widgets in the application.

GUI terminology: “event loop”

let run (w:widget) : unit =
Graphics.loop …wait for user input (mouse click, etc)

(fun e ->
clear_graph ();
w.handle e; …inform widget about the event…
w.repaint () …update the widget's appearance…

)

16

let rec loop (f: event -> unit) : unit =
let e = wait_next_event () in
f e;
loop f Graphics

Eventloop

Drawing: Containers

border

hpair

border

label

hpair

space border

label

Challenge: How can we make it so that the functions that draw widgets
in different places on the window are location independent?

.repaint ()

.repaint ()

.repaint ()

.repaint ()

.repaint ()

Container widgets propagate repaint commands to their children:

.repaint ()

.repaint ()

.repaint ()

Hello World

Module: Gctx

“Contextualizes” graphics operations

Gctx.ml

Challenge: Widget Layout
• Widgets are “things drawn on the screen”. How to make them

location independent?
• Idea: Use a graphics context to make drawing relative to a

widget’s current position

Paint.ml

Native
graphics
library

GUI
Library

Application

Widget.ml

OCaml’s Graphics Module (graphics.cma)

Eventloop.ml
The graphics
context
isolates the
widgets from
the Graphics
module.

19

GUI terminology – Graphics Context
• Wraps OCaml Graphics library; puts drawing operations

“in context”
• Translates coordinates

– Flips between OCaml and
“standard” coordinates so origin
is top-left

– Translates coordinates so all
widgets can pretend that
they are at the origin

• Also carries information about the way things should be drawn
– color
– line width

• "Task 0" in the homework helps you understand the interaction
between Gctx and OCaml's Graphics module

20

Graphics Contexts

let top = Gctx.top_level in

21

This top box is a picture
of the whole window.

Graphics Contexts

let top = Gctx.top_level

22

The top graphics context represents
a coordinate system anchored
at (0,0), with current pen color
of black.

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

23

Drawing a string at (0,10) in this
context positions it on the left
edge and 10 pixels down.
The string is drawn in black.

CIS 120

Graphics Contexts

24

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

(* move origin and change the color *)
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red

Translating the gctx has the
effect of shifting the origin
relative to the old origin.

CIS 120

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

(* move origin and change the color *)
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red
25

dx

dy CIS 120

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

(* move origin and change the color *)
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red
26

dx

dy

with_color changes the
current drawing color...

CIS 120

Graphics Contexts

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

(* move origin and change the color *)
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 120" 27

dx

dy

Drawing the same string
at the same coordinates
in the new context causes
it to display at a translated
location and in the
new color.

CIS 120

CIS 120

Graphics Contexts

28

CIS 120

CIS 120

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"

(* move origin and change the color *)
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 120"

The graphics contexts
aren't displayed anywhere,
they only serve as frames
of reference...

Graphics Contexts

30

CIS 120

CIS 120

let top = Gctx.top_level
;; Gctx.draw_string top (0,10) "CIS 120"
let nctx = Gctx.with_color

(Gctx.translate top (dx,dy)) red
;; Gctx.draw_string nctx (0,10) "CIS 120"
let ctx3 = ???
;; Gctx.draw_string ctx3 (0,0) "HERE!"

HERE!

Which of the following can we fill in
for ??? to obtain the result shown?

1. Gctx.translate top (dx,0)
2. Gctx.translate top (0,-dy)
3. Gctx.translate nctx (dx,0)
4. Gctx.translate nctx (0,-dy)

Answer: 4

OCaml vs. “Standard” Coordinates

OCaml (0,0)

Standard (0,0)
size_x

size_y

Standard (x,y) = OCaml (x, size_y - y)

(x,y)

33

The graphics context also translates between
"standard" GUI coordinates, with (0,0) origin at the
upper left of the window. To OCaml a.k.a. Cartesian
coordinates, with (0,0) origin at the lower left of the
window...

Module Gctx

(** The main (abstract) type of graphics contexts. *)
type gctx

(** The top-level graphics context *)
val top_level : gctx

(** A widget-relative position *)
type position = int * int

(** Display text at the given (relative) position *)
val draw_string : gctx -> position -> string -> unit
(** Draw a line between the two specified positions *)
val draw_line : gctx -> position -> position -> unit

(** Produce a new gctx shifted by (dx,dy) *)
val translate : gctx -> int * int -> gctx
(** Produce a new gctx with a different pen color *)
val with_color : gctx -> color -> gctx

34

The (real) widget type

Recall: A widget is an object with three methods…
1. it can repaint itself (given an appropriate graphics context)
2. it can handle events
3. it knows its current size

35

type widget = {
repaint: Gctx.gctx -> unit;
handle: Gctx.gctx -> Gctx.event -> unit;
size: unit -> Gctx.dimension

}

Event loop with graphics context

let run (w:widget) : unit =
let g = Gctx.top_level in …create the initial gctx…
Graphics.loop …wait for user input

(fun e ->
clear_graph ();
w.handle g e …inform widget about the event…
w.repaint g …update the widget's appearance…

)

36

let rec loop (f: event -> unit) : unit =
let e = wait_next_event () in
f e;
loop f Graphics

Eventloop

Widget Layout

Building blocks of GUI applications
see simpleWidget.ml

Simple Widgets

• You can ask a simple widget to repaint itself
– Repainting is relative to a graphics context

• You can ask a simple widget to tell you its size
• (For now, we ignore event handling...)

(* An interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;
size : unit -> (int * int)

}
val label : string -> widget
val space : int * int -> widget
val border : widget -> widget
val hpair : widget -> widget -> widget
val canvas : int * int -> (Gctx.gctx -> unit) -> widget

simpleWidget.mli

Widget Examples

(* A simple widget that puts some text on the screen *)
let label (s:string) : widget =
{

repaint = (fun (g:Gctx.gctx) -> Gctx.draw_string g (0,0) s);
size = (fun () -> Gctx.text_size s)

}

(* A "blank" area widget -- it just takes up space *)
let space ((w,h):int*int) : widget =
{

repaint = (fun (_:Gctx.gctx) -> ());
size = (fun () -> (w,h))

}

simpleWidget.ml

simpleWidget.ml

The canvas Widget
• Region of the screen that can be drawn upon
• Has a fixed width and height
• Parameterized by a repaint method

– …which will directly use the Gctx drawing routines to draw on the
canvas

let canvas ((w,h):int*int) (r: Gctx.gctx -> unit) : widget =
{

repaint = r;
size = (fun () -> (w,h))

}
simpleWidget.ml

Nested Widgets

Containers and Composition

The Border Widget Container

• let b = border w
• Draws a one-pixel wide border around contained widget w
• b’s size is slightly larger than w’s (+4 pixels in each dimension)

• b’s repaint method must call w’s repaint method

• When b asks w to repaint, b must translate the Gctx.t to (2,2) to account for the
displacement of w from b’s origin

0 1 2 3 …
0
1
2
3

w

w’s width

w’s
height

(w’s width + 4) - 1

translate
the Gctx

(w’s height + 4) - 1

The Border Widget

43

let border (w:widget):widget =
{
repaint = (fun (g:Gctx.gctx) ->
let (width,height) = w.size () in
let x = width + 3 in
let y = height + 3 in
Gctx.draw_line g (0,0) (x,0);
Gctx.draw_line g (0,0) (0,y);
Gctx.draw_line g (x,0) (x,y);
Gctx.draw_line g (0,y) (x,y);
let gw = Gctx.translate g (2,2) in
w.repaint gw);

size = (fun () ->
let (width,height) = w.size () in
(width+4, height+4))

}

Draw the border

Display the interior

simpleWidget.ml

The hpair Widget Container

• let h = hpair w1 w2
• Creates a horizontally adjacent pair of widgets
• Aligns them by their top edges

– Must translate the Gctx when repainting w2
• Size is the sum of their widths and max of their heights

w1

w2

translate Gctx
to repaint w2

h’s width

h’s
height

The hpair Widget

45

let hpair (w1: widget) (w2: widget) : widget =
{
repaint = (fun (g: Gctx.gctx) ->

let (x1, _) = w1.size () in begin
w1.repaint g;
w2.repaint (Gctx.translate g (x1,0))
(* Note translation of the Gctx *)

end);

size = (fun () ->
let (x1, y1) = w1.size () in
let (x2, y2) = w2.size () in
(x1 + x2, max y1 y2))

}

simpleWidget.ml

Translate the Gctx
to shift w2’s position
relative to widget-local
origin.

Widget Hierarchy Pictorially
(* Create some simple label widgets *)
let l1 = label "Hello"
let l2 = label "World"
(* Compose them horizontally, adding some borders *)
let h = border (hpair (border l1)

(hpair (space (10,10)) (border l2)))

Hello World

On the screen

border

hpair

border

label

hpair

space border

labelWidget tree

swdemo.ml

Drawing: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

.repaint g

.repaint g1

.repaint g2

.repaint g3

.repaint g4

Container widgets propagate repaint commands to their children:

g1 = Gctx.translate g (2,2)
g2 = Gctx.translate g1 (hello_width,0)
g3 = Gctx.translate g2 (space_width,0)
g4 = Gctx.translate g3 (2,2)

Container Widgets for layout

hlist is a container widget.
It takes a list of widgets and
turns them into a single one
by laying them out
horizontally (using hpair).

48

let color_toolbar : widget = hlist
[color_button black; spacer;
color_button white; spacer;
color_button red; spacer;
color_button green; spacer;
color_button blue; spacer;
color_button yellow; spacer;
color_button cyan; spacer;
color_button magenta]

paint.ml

