
Programming Languages
and Techniques

(CIS120)

Lecture 20

GUI: Events & State
Chapter 18

Announcements
• HW5: GUI programming
– Due: Tuesday, October 22nd at 11:59 pm
– The project is structured as tasks, not files

(one task may touch multiple files)

• Java Bootcamp
– Wednesday, October 23rd 6:00-8:00PM
– Towne 100
– Java refresher / crash course: basic syntax, fields & methods,

arrays, Eclipse setup, using the debugger

– Please respond to poll on Piazza if you plan to attend

2

lightbulb demo

Clicking here
makes the “lightbulb” turn on
and changes label text

Clicking again
makes it turn back off

canvas,
with border

label, with borderspace

Reactive Widgets

• Widgets now have a “method” for handling events
• The eventloop waits for an event and then gives it to the root widget
• The widgets forward the event down the tree, according to the

position of the event

type widget = {
repaint : Gctx.gctx -> unit;
size : unit -> Gctx.dimension;
handle : Gctx.gctx -> Gctx.event -> unit

}

widget.mli

Event-handling: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

User clicks,
generating

event e
.handle g e

.handle g1 e

.handle g2 e

.handle g3 e

.handle g4 e

Container widgets propagate events to their children:

Routing events
through container widgets

Event Handling: Routing
• When a container widget handles an event, it passes the event to the

appropriate child

• The Gctx.gctx must be translated so that the child can interpret the event
in its own local coordinates.

let border (w:widget):widget =
{ repaint = …;
size = …;
handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->

w.handle (Gctx.translate g (2,2)) e);
}

widget.ml

Consider routing an event through an hpair widget
constructed by:

The event will always be propagated either to w1 or w2.

1. True

2. False

let hp = hpair w1 w2

Answer: False

Routing events through hpair widgets

• There are three cases for routing in an hpair.
• An event in the “empty area” should not be sent to either w1

or w2.

w1

w2

h’s width

h’s
height

Drop this
event

Route to
w1

Route to
w2

Routing events through hpair widgets
• The event handler of an hpair must check to see whether the event should

be handled by the left or right widget.
– Check the event’s coordinates against the size of the left widget
– If the event is within the left widget, let it handle the event
– Otherwise check the event’s coordinates against the right child’s
– If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.gctx) (e:Gctx.event) ->
if event_within g e (w1.size ())
then w1.handle g e
else
let g = (Gctx.translate g (fst (w1.size ()), 0)) in
if event_within g e (w2.size ())
then w2.handle g e
else ())

Stateful Widgets

How can widgets react to events?

A stateful label Widget

• The label object can make its string mutable. The methods can refer to
this mutable string.

• But how can we change this string in response to an event?

let label (s: string) : widget =
let r = { contents = s } in
{ repaint = (fun (g: Gctx.gctx) ->

Gctx.draw_string g (0,0) r.contents);
handle = (fun _ _ -> ());
size = (fun () -> Gctx.text_size r.contents)

}

(not very useful first stab at a)
v

A stateful label Widget

• A label consists of two parts: the widget and its controller

• A controller gives access to the shared state.
– Here, the label_controller object returned by label provides a way to

set the label string

type label_controller = { set_label: string -> unit }

let label (s: string) : widget * label_controller =
let r = { contents = s } in
({ repaint = (fun (g: Gctx.gctx) ->

Gctx.draw_string g (0,0) r.contents);
handle = (fun _ _ -> ());
size = (fun () -> Gctx.text_size r.contents)

}
,
{ set_label = fun (s: string) -> r.contents <- s })

widget.ml

EVENT LISTENERS

See notifierdemo.ml

(distributed with the homework)

CIS120 17

listeners

Listeners and Notifiers Pictorially

border

hpair

border

label

hpair

space border

labelWidget tree

Hello World

On the screen

notifier l1 :: l2 :: l3 :: []

User clicks,
generating

event e

Handling multiple event types
• Problem: Widgets may want to react to many different events
• Example: Button

– button click: changes the state of the paint program and button label
– mouse movement: tooltip? highlight?
– key press: provide keyboard access to the button functionality?

• These reactions should be independent
– Each sort of event handled by a different event listener

(i.e. a first-class function)
– Reactive widgets may have several listeners to handle a triggered

event
– Listeners react in sequence, all have a chance to see the event

• Solution: notifier

CIS120 21

True or False: One can use a notifier and label to
create a button that toggles the states of two separate
lightbulb canvases.

Answer: True

Listeners

type event_listener = Gctx.gctx -> Gctx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)

: event_listener =
fun (g:Gctx.gctx) (e: Gctx.event) ->
if Gctx.event_type e = Gctx.MouseDown
then action ()

widget.ml

Notifiers
• A notifier is a container widget that adds event listeners to a

node in the widget hierarchy
– Note: this way of structuring event listeners is based on Java’s Swing

Library design (we use Swing terminology).

• Event listeners “eavesdrop” on the events flowing through the
notifier
– The event listeners are stored in a list
– They react in order
– Then the event is passed down to the child widget

• Event listeners can be added by using a notifier_controller

Notifiers and Notifier Controllers
type notifier_controller =

{ add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } in
{ repaint = w.repaint;
size = w.size
handle =
(fun (g: Gctx.gctx) (e: Gctx.event) ->

List.iter (fun h -> h g e) listeners.contents;
w.handle g e);

},
{ add_event_listener =

fun (newl: event_listener) ->
listeners.contents <-

newl :: listeners.contents
}

Loop through the list
of listeners, allowing
each one to process
the event. Then pass
the event to the child.

The notifier_controller allows
new listeners to be added to
the list.

widget.ml

Buttons (at last!)

• A button widget is just a label wrapped in a notifier
• Add a mouseclick_listener to the button using the

notifier_controller
• (For aesthetic purposes, we could also put a border around

the label widget.)

(* A text button *)
let button (s: string) : widget

* label_controller
* notifier_controller =

let (w, lc) = label s in
let (w', nc) = notifier w in
(w', lc, nc)

widget.ml

DEMO: ONOFF

onoff.ml — changing state on a button click

CIS120 26

