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Announcements
• HW5: GUI programming
– Due: Tuesday, October 22nd at 11:59 pm
– The project is structured as tasks, not files

(one task may touch multiple files)

• Java Bootcamp
– Wednesday, October 23rd 6:00-8:00PM
– Towne 100
– Java refresher / crash course: basic syntax, fields & methods, 

arrays, Eclipse setup, using the debugger

– Please respond to poll on Piazza if you plan to attend

2





lightbulb demo

Clicking here
makes the “lightbulb” turn on
and changes label text

Clicking again
makes it turn back off

canvas,
with border

label, with borderspace



Reactive Widgets

• Widgets now have a “method” for handling events
• The eventloop waits for an event and then gives it to the root widget
• The widgets forward the event down the tree, according to the 

position of the event

type widget = {
repaint : Gctx.gctx -> unit;
size    : unit -> Gctx.dimension;
handle  : Gctx.gctx -> Gctx.event -> unit

}

widget.mli



Event-handling: Containers

border

hpair

border

label

hpair

space border

label

Widget tree

Hello World

On the screen

User clicks, 
generating 

event e
.handle g e

.handle g1 e

.handle g2 e

.handle g3 e

.handle g4 e

Container widgets propagate events to their children:



Routing events 
through container widgets



Event Handling: Routing
• When a container widget handles an event, it passes the event to the 

appropriate child

• The Gctx.gctx must be translated so that the child can interpret the event 
in its own local coordinates.

let border (w:widget):widget =
{ repaint = …;
size = …;
handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->

w.handle (Gctx.translate g (2,2)) e);
}

widget.ml





Consider routing an event through an hpair widget 
constructed by:

The event will always be propagated either to w1 or w2.

1. True

2. False

let hp = hpair w1 w2

Answer: False



Routing events through hpair widgets

• There are three cases for routing in an hpair.
• An event in the “empty area” should not be sent to either w1 

or w2.
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Routing events through hpair widgets
• The event handler of an hpair must check to see whether the event should 

be handled by the left or right widget.
– Check the event’s coordinates against the size of the left widget
– If the event is within the left widget, let it handle the event
– Otherwise check the event’s coordinates against the right child’s
– If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.gctx) (e:Gctx.event) ->
if event_within g e (w1.size ())
then w1.handle g e
else
let g = (Gctx.translate g (fst (w1.size ()), 0)) in
if event_within g e (w2.size ())
then w2.handle g e
else ())



Stateful Widgets

How can widgets react to events?



A stateful label Widget

• The label object can make its string mutable. The methods can refer to 
this mutable string. 

• But how can we change this string in response to an event?  

let label (s: string) : widget =
let r = { contents = s } in
{ repaint = (fun (g: Gctx.gctx) ->

Gctx.draw_string g (0,0) r.contents);
handle  = (fun _ _ -> ());
size    = (fun () -> Gctx.text_size r.contents)

}

(not very useful first stab at a)
v



A stateful label Widget

• A label consists of two parts: the widget and its controller

• A  controller gives access to the shared state.
– Here, the label_controller object returned by label provides a way to 

set the label string

type label_controller = { set_label: string -> unit }

let label (s: string) : widget * label_controller =
let r = { contents = s } in
({ repaint = (fun (g: Gctx.gctx) ->

Gctx.draw_string g (0,0) r.contents);
handle  = (fun _ _ -> ());
size    = (fun () -> Gctx.text_size r.contents)

}
,
{ set_label = fun (s: string) -> r.contents <- s })

widget.ml



EVENT LISTENERS

See notifierdemo.ml

(distributed with the homework)
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listeners

Listeners and Notifiers Pictorially
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Handling multiple event types
• Problem:  Widgets may want to react to many different events
• Example: Button

– button click: changes the state of the paint program and button label
– mouse movement:  tooltip?  highlight?
– key press:  provide keyboard access to the button functionality?

• These reactions should be independent
– Each sort of event handled by a different event listener 

(i.e. a first-class function)
– Reactive widgets may have several listeners to handle a triggered 

event
– Listeners react in sequence, all have a chance to see the event

• Solution: notifier
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True or False:  One can use a notifier and label to
create a button that toggles the states of two separate
lightbulb canvases.

Answer: True



Listeners

type event_listener = Gctx.gctx -> Gctx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)

: event_listener =
fun (g:Gctx.gctx) (e: Gctx.event) ->
if Gctx.event_type e = Gctx.MouseDown
then action ()

widget.ml



Notifiers
• A notifier is a container widget that adds event listeners to a 

node in the widget hierarchy 
– Note: this way of structuring event listeners is based on Java’s Swing 

Library design (we use Swing terminology).

• Event listeners “eavesdrop” on the events flowing through the 
notifier
– The event listeners are stored in a list
– They react in order
– Then the event is passed down to the child widget

• Event listeners can be added by using a notifier_controller



Notifiers and Notifier Controllers
type notifier_controller =

{ add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } in
{ repaint = w.repaint;
size    = w.size
handle  =
(fun (g: Gctx.gctx) (e: Gctx.event) ->

List.iter (fun h -> h g e) listeners.contents;
w.handle g e);

},
{ add_event_listener =

fun (newl: event_listener) ->
listeners.contents <-

newl :: listeners.contents
}

Loop through the list
of listeners, allowing
each one to process
the event. Then pass
the event to the child.

The notifier_controller allows
new listeners to be added to 
the list.

widget.ml



Buttons  (at last!)

• A button widget is just a label wrapped in a notifier
• Add a mouseclick_listener to the button using the 

notifier_controller
• (For aesthetic purposes, we could also put a border around 

the label widget.)

(* A text button *)
let button (s: string) : widget 

* label_controller
* notifier_controller =

let (w, lc) = label s in
let (w', nc) = notifier w in
(w', lc, nc)

widget.ml



DEMO: ONOFF

onoff.ml — changing state on a button click
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