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Announcements
• HW05: GUI programming
– Due: Tomorrow at 11:59:59pm

• HW06: Pennstagram
– Available soon
– Due: Tuesday, November 5th at 11:59:59pm
– Java programming

• Java Bootcamp!!
– Wednesday, 6-8 pm
– Towne 100



Goodbye OCaml… 
…Hello Java!



Smoothing the transition
• Java Bootcamp!

– Wednesday, 6-8 pm, Towne 100

• General advice for the next few lectures: Ask questions, but 
don’t stress about the details until you need them.

• Java resources:
– Our lecture notes
– CIS 110 website and textbook
– Online Java textbook (http://math.hws.edu/javanotes/) linked from 

“CIS 120 Resources” on course website
– Penn Library: Electronic access to “Java in a Nutshell” 

(and all other O’Reilly books)
– Piazza
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http://math.hws.edu/javanotes/


CIS 120 Overview
• Declarative (Functional) programming

– persistent data structures
– recursion is main control structure
– frequent use of functions as data

• Imperative programming
– mutable data structures (that can be modified “in place”)
– iteration is main control structure

• Object-oriented (and reactive) programming
– mutable data structures / iteration
– heavy use of functions (objects) as data
– pervasive “abstraction by default”

CIS120

OCaml

Java
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Java and OCaml together

Xavier Leroy, one of the principal 
designers of OCaml 

Guy Steele, one of the 
principal designers of Java
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Moral: Java and OCaml are not so far apart…

Stephanie Weirich, Penn Prof.  (CIS 
120 co-developer, major contributor 
to Haskell)



Recap: The Functional Style 
• Core ideas:

– immutable (persistent / declarative) data structures
– recursion (and iteration) over tree structured data
– functions as data
– generic types for flexibility (i.e. ‘a list)
– abstract types to preserve invariants  (i.e. BSTs)
– simple model of computation (substitution)

• Good for:
– elegant descriptions of complex algorithms and/or data
– small-scale compositional design
– “symbol processing” programs (compilers, theorem provers, etc.)
– parallelism, concurrency, and distribution
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Functional programming 

• No primitive data 
structures, no tail recursion

• Trees must be encoded by 
objects, mutable by 
default

• First-class functions less 
common*

• Generic types
• Abstract types through 

public/private modifiers

• Immutable lists primitive, 
tail recursion

• Datatypes and pattern 
matching for tree structured 
data

• First-class functions, 
transform and fold

• Generic types 
• Abstract types through 

module signatures

CIS120

*completely unsupported until recently (Java 8)

9



OCaml vs. Java for FP

CIS120

interface Tree<A> {
public boolean isEmpty();

}
class Empty<A> implements Tree<A> {
public boolean isEmpty() {

return true;
}

}
class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> lt;
private final Tree<A> rt;

Node(Tree<A> lt, A v, Tree<A> rt) {
this.lt = lt; this.rt = rt; this.v = v;

}

public boolean isEmpty() {
return false;

}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t = 
new Node<Integer>(new Empty<Integer>(), 
3, new Empty<Integer>());
boolean ans = t.isEmpty();

}
}

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is_empty (t:'a tree) : bool =
begin match t with
| Empty -> true
| _ -> false

end

let t : int tree = Node(Empty,3,Empty)
let ans : bool = is_empty t
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OCaml provides a succinct, clean
notation for working with generic,
immutable, tree-structured data.
Java requires a lot more "boilerplate".



Other Popular Functional Languages

CIS120

Clojure
Dynamically typed
Runs on JVM

F#: Most similar to OCaml,
Shares libraries with C# Haskell (CIS 552)

Purity + laziness
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Swift
iOS programming

Scala
Java / OCaml hybrid

Racket: LISP descendant; 
widely used in education



Recap: The imperative style
• Core ideas:

– computation as change of state over time
– distinction between primitive and reference values
– aliasing
– linked data-structures and iteration control structure
– generic types for flexibility (i.e. ‘a queue)
– abstract types to preserve invariants  (i.e. queue invariant)
– Abstract Stack Machine model of computation

• Good for:
– numerical simulations
– implicit coordination between components (queues, GUI)
– explicit interaction with hardware
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Imperative programming 

• Most types have a null
element. Partial functions 
can return null.

• Code is a sequence of 
statements that have 
effects, sometimes using 
expressions to compute 
values.

• References are mutable by 
default, must be explicitly 
declared to be constant

• No null. Partiality must be 
made explicit with options.

• Code is an expression that 
has a value. Sometimes 
computing that value has 
other effects.

• References are immutable 
by default, must be 
explicitly declared to be 
mutable 

CIS120 13



Explicit vs. Implicit Partiality
Java variables
• Can be assigned to after 

initialization

• Can always be null

• Check for null is implicit 
whenever a variable is used

• If null is used as if it were an object 
(i.e. for a method call) then a 
NullPointerException occurs

OCaml identifiers
• Cannot be changed once created; 

only mutable fields can change

• Cannot be null, must use options

• Accessing the value requires 
pattern matching
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type 'a ref = { mutable contents: 'a }
let x = { contents = counter () }
;; x.contents <- counter ()

let y = { contents = Some (counter ())}
;; y.contents <- None

;; match y.contents with

| None -> failwith "NPE"

| Some c -> c.inc ()

Counter x = new Counter ();

x = new Counter ();

Counter y = new Counter ();

y = null;

y.inc();

CIS120



The Billion Dollar Mistake

CIS120

"I call it my billion-dollar mistake. It was the invention of the null 
reference in 1965. … This has led to innumerable errors, 
vulnerabilities, and system crashes, which have probably caused 
a billion dollars of pain and damage in the last forty years. "

Sir Tony Hoare,  QCon, London 2009
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Java Core Language

differences between OCaml and Java



Structure of a Program

• All code lives in explicitly 
named classes. 

• Classes are themselves types.
• Classes contain field 

declarations and method 
definitions.

• There is a single "entry point" 
of the program where it starts 
running, which must be a 
method called main.

• All code lives in (perhaps 
implicitly named) modules.

• Modules may contain 
multiple type definitions, 
let-bound value 
declarations, and top-level 
expressions that are 
executed in the order they 
are encountered.
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Expressions vs. Statements
• OCaml is an expression language 

– Every program phrase is an expression 
(and returns a value)

– The special value () of type unit is used as the result of expressions 
that are evaluated only for their side effects

– Semicolon is an operator that combines two expressions 
(where the left-hand one returns type unit)

• Java is a statement language 
– Two-sorts of program phrases: expressions (which compute values) 

and statements (which don’t)
– Statements are terminated by semicolons
– Any expression can be used as a statement (but not vice-versa)
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Types
• As in OCaml, every Java expression has a type
• The type describes the value that an expression computes

CIS120

Expression form Example Type

Variable reference x Declared type of variable

Object creation new Counter () Class of the object

Method call c.inc() Return type of method

Equality test x == y boolean
Assignment x = 5 don’t use as an expression!!
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Type System Organization 

CIS120

OCaml Java

primitive types
(values stored 
“directly” in the 
stack)

int, float, char, bool, … int, float, double, char, boolean, 
…

structured types 
(a.k.a. reference 
types — values 
stored in the heap)

tuples, datatypes, records, 
functions, arrays

(objects encoded as records 
of functions)

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are  
special cases of classes)

generics ‘a list List<A>

abstract types module types (signatures) interfaces
public/private modifiers
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Arithmetic & Logical Operators

CIS120

OCaml Java

=, == == equality test
<>, != != inequality
>, >=, <, <= >, >=, <, <= comparisons
+ + addition (and string concatenation)
- - subtraction (and unary minus)
* * multiplication
/ / division
mod % remainder (modulus)
not ! logical “not”
&& && logical “and” (short-circuiting)
|| || logical “or” (short-circuiting)

21



CIS120

Java: Operator Overloading

• The meaning of an operator in Java is determined by the 
types of the values it operates on:
– Integer division

4/3 ⇒ 1

– Floating point division
4.0/3.0⇒ 1.3333333333333333

– Automatic conversion from int to float
4/3.0 ⇒ 1.3333333333333333

• Overloading is a general mechanism in Java 
– we’ll see more of it later
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Equality
• like OCaml, Java has two ways of testing reference types for 

equality:
– “pointer equality” 

o1 == o2
– “deep equality”

o1.equals(o2)

• Normally, you should use == to compare primitive types and 
“.equals” to compare objects

CIS120

every object provides an “equals” 
method that should “do the right 
thing” depending on the class of 
the object
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Strings
• String is a built in Java class
• Strings are sequences of (unicode) characters 

""   "Java"    "3 Stooges" "富士山"
• + means String concatenation (overloaded)

"3" + " " + "Stooges"Þ "3 Stooges"
• Text in a String is immutable (like OCaml)

– but variables that store strings are not
– String x = "OCaml";
– String y = x;
– Can't do anything to x so that y changes

• The .equals method returns true when two strings 
contain the same sequence of characters 
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CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 120";
String z = "CIS 120";
boolean ans = x.equals(z);

Answer: true
This is the preferred method of comparing strings!
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CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x1 = "CIS ";
String x2 = "120";
String x = x1 + x2;
String z = "CIS 120";
boolean ans = (x == z);

Answer: false
Even though x and z both contain the characters “CIS 120”, 
they are stored in two different locations in the heap.
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CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 120";
String z = "CIS 120";
boolean ans = (x == z);

Answer: true(!)
Why? Since strings are immutable, two identical 
strings that are known when the program is compiled can be 
aliased by the compiler (to save space).
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Moral

CIS120

Always use s1.equals(s2) to 
compare strings!

Compare strings with respect to their 
content, not where they happen to be 
allocated in memory…
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Object Oriented Programming



Recap: The OO Style
• Core ideas:

– objects (state encapsulated with operations)
– dynamic dispatch (“receiver” of method call determines behavior)
– classes (“templates” for object creation)
– subtyping (grouping object types by common functionality)
– inheritance (creating new classes from existing ones)

• Good for:
– GUIs!

• complex software systems that include many different implementations of 
the same “interface” (set of operations) with different behaviors

– Simulations
• designs with an explicit correspondence between “objects” in the 

computer and things in the real world 
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"Objects" in OCaml

CIS120

(* The type of counter objects *)
type counter = {

inc  : unit -> int;
dec : unit -> int;

}

(* Create a counter “object” *)
let new_counter () : counter =
let r = {contents = 0} in
{
inc = (fun () ->
r.contents <- r.contents + 1;
r.contents);

dec = (fun () ->
r.contents <- r.contents - 1;
r.contents)

}

Why is this an object?

§ Encapsulated local state
only visible to the methods 
of the object

§ Object is defined by what it 
can do—local state does not 
appear in the interface

§ There is a way to construct
new object values that 
behave similarly 
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OO terminology
• Object: a structured collection of encapsulated fields 

(aka instance variables) and methods
• Class: a template for creating objects
• The class of an object specifies…
– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object 

(methods)
– one or more constructors: code that is executed when the 

object is created (optional)
• Every (Java) object is an instance of some class
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OO programming 

(and C, C++, C#)

• Primitive notion of object 
creation (classes, with fields, 
methods and constructors)

• Flexibility through extension:
Subtyping allows related 
objects to share a common 
interface 

(part we've seen)

• Explicitly create objects using 
a record of higher order 
functions and hidden state

• Flexibility through 
composition: objects can only 
implement one interface
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type button = 
widget *
label_controller *
notifier_controller

class Button extends Widget {
/* Button is a subtype

of Widget */

} 



public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

} 
}

Objects in Java

CIS120

instance variable

constructor

methods

class name
class declaration

constructor 
invocation

method call

object creation and use

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println( c.inc() );

}
}
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public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

} 
}

Encapsulating local state

CIS120

constructor and
methods can 
refer to r

method call

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println( c.inc() );

}
}

other parts of the 
program can only access 
public members

r is private
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Encapsulating local state 
• Visibility modifiers make the state local by 

controlling access
• Basically:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

(Java offers a couple of other protection levels — “protected” and 
“package protected”.  The details are not important at this point.)
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