
Programming Languages
and Techniques

(CIS120)

Lecture 21

Transition to Java

Announcements
• HW05: GUI programming
– Due: Tomorrow at 11:59:59pm

• HW06: Pennstagram
– Available soon
– Due: Tuesday, November 5th at 11:59:59pm
– Java programming

• Java Bootcamp!!
– Wednesday, 6-8 pm
– Towne 100

Goodbye OCaml…
…Hello Java!

Smoothing the transition
• Java Bootcamp!

– Wednesday, 6-8 pm, Towne 100

• General advice for the next few lectures: Ask questions, but
don’t stress about the details until you need them.

• Java resources:
– Our lecture notes
– CIS 110 website and textbook
– Online Java textbook (http://math.hws.edu/javanotes/) linked from

“CIS 120 Resources” on course website
– Penn Library: Electronic access to “Java in a Nutshell”

(and all other O’Reilly books)
– Piazza

CIS120 5

http://math.hws.edu/javanotes/

CIS 120 Overview
• Declarative (Functional) programming

– persistent data structures
– recursion is main control structure
– frequent use of functions as data

• Imperative programming
– mutable data structures (that can be modified “in place”)
– iteration is main control structure

• Object-oriented (and reactive) programming
– mutable data structures / iteration
– heavy use of functions (objects) as data
– pervasive “abstraction by default”

CIS120

OCaml

Java

6

Java and OCaml together

Xavier Leroy, one of the principal
designers of OCaml

Guy Steele, one of the
principal designers of Java

7CIS120

Moral: Java and OCaml are not so far apart…

Stephanie Weirich, Penn Prof. (CIS
120 co-developer, major contributor
to Haskell)

Recap: The Functional Style
• Core ideas:

– immutable (persistent / declarative) data structures
– recursion (and iteration) over tree structured data
– functions as data
– generic types for flexibility (i.e. ‘a list)
– abstract types to preserve invariants (i.e. BSTs)
– simple model of computation (substitution)

• Good for:
– elegant descriptions of complex algorithms and/or data
– small-scale compositional design
– “symbol processing” programs (compilers, theorem provers, etc.)
– parallelism, concurrency, and distribution

CIS120 8

Functional programming

• No primitive data
structures, no tail recursion

• Trees must be encoded by
objects, mutable by
default

• First-class functions less
common*

• Generic types
• Abstract types through

public/private modifiers

• Immutable lists primitive,
tail recursion

• Datatypes and pattern
matching for tree structured
data

• First-class functions,
transform and fold

• Generic types
• Abstract types through

module signatures

CIS120

*completely unsupported until recently (Java 8)

9

OCaml vs. Java for FP

CIS120

interface Tree<A> {
public boolean isEmpty();

}
class Empty<A> implements Tree<A> {
public boolean isEmpty() {

return true;
}

}
class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> lt;
private final Tree<A> rt;

Node(Tree<A> lt, A v, Tree<A> rt) {
this.lt = lt; this.rt = rt; this.v = v;

}

public boolean isEmpty() {
return false;

}
}

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty();

}
}

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is_empty (t:'a tree) : bool =
begin match t with
| Empty -> true
| _ -> false

end

let t : int tree = Node(Empty,3,Empty)
let ans : bool = is_empty t

10

OCaml provides a succinct, clean
notation for working with generic,
immutable, tree-structured data.
Java requires a lot more "boilerplate".

Other Popular Functional Languages

CIS120

Clojure
Dynamically typed
Runs on JVM

F#: Most similar to OCaml,
Shares libraries with C# Haskell (CIS 552)

Purity + laziness

11

Swift
iOS programming

Scala
Java / OCaml hybrid

Racket: LISP descendant;
widely used in education

Recap: The imperative style
• Core ideas:

– computation as change of state over time
– distinction between primitive and reference values
– aliasing
– linked data-structures and iteration control structure
– generic types for flexibility (i.e. ‘a queue)
– abstract types to preserve invariants (i.e. queue invariant)
– Abstract Stack Machine model of computation

• Good for:
– numerical simulations
– implicit coordination between components (queues, GUI)
– explicit interaction with hardware

CIS120 12

Imperative programming

• Most types have a null
element. Partial functions
can return null.

• Code is a sequence of
statements that have
effects, sometimes using
expressions to compute
values.

• References are mutable by
default, must be explicitly
declared to be constant

• No null. Partiality must be
made explicit with options.

• Code is an expression that
has a value. Sometimes
computing that value has
other effects.

• References are immutable
by default, must be
explicitly declared to be
mutable

CIS120 13

Explicit vs. Implicit Partiality
Java variables
• Can be assigned to after

initialization

• Can always be null

• Check for null is implicit
whenever a variable is used

• If null is used as if it were an object
(i.e. for a method call) then a
NullPointerException occurs

OCaml identifiers
• Cannot be changed once created;

only mutable fields can change

• Cannot be null, must use options

• Accessing the value requires
pattern matching

14

type 'a ref = { mutable contents: 'a }
let x = { contents = counter () }
;; x.contents <- counter ()

let y = { contents = Some (counter ())}
;; y.contents <- None

;; match y.contents with

| None -> failwith "NPE"

| Some c -> c.inc ()

Counter x = new Counter ();

x = new Counter ();

Counter y = new Counter ();

y = null;

y.inc();

CIS120

The Billion Dollar Mistake

CIS120

"I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. … This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years. "

Sir Tony Hoare, QCon, London 2009

15

Java Core Language

differences between OCaml and Java

Structure of a Program

• All code lives in explicitly
named classes.

• Classes are themselves types.
• Classes contain field

declarations and method
definitions.

• There is a single "entry point"
of the program where it starts
running, which must be a
method called main.

• All code lives in (perhaps
implicitly named) modules.

• Modules may contain
multiple type definitions,
let-bound value
declarations, and top-level
expressions that are
executed in the order they
are encountered.

CIS120 17

Expressions vs. Statements
• OCaml is an expression language

– Every program phrase is an expression
(and returns a value)

– The special value () of type unit is used as the result of expressions
that are evaluated only for their side effects

– Semicolon is an operator that combines two expressions
(where the left-hand one returns type unit)

• Java is a statement language
– Two-sorts of program phrases: expressions (which compute values)

and statements (which don’t)
– Statements are terminated by semicolons
– Any expression can be used as a statement (but not vice-versa)

CIS120 18

Types
• As in OCaml, every Java expression has a type
• The type describes the value that an expression computes

CIS120

Expression form Example Type

Variable reference x Declared type of variable

Object creation new Counter () Class of the object

Method call c.inc() Return type of method

Equality test x == y boolean
Assignment x = 5 don’t use as an expression!!

19

Type System Organization

CIS120

OCaml Java

primitive types
(values stored
“directly” in the
stack)

int, float, char, bool, … int, float, double, char, boolean,
…

structured types
(a.k.a. reference
types — values
stored in the heap)

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are
special cases of classes)

generics ‘a list List<A>

abstract types module types (signatures) interfaces
public/private modifiers

20

Arithmetic & Logical Operators

CIS120

OCaml Java

=, == == equality test
<>, != != inequality
>, >=, <, <= >, >=, <, <= comparisons
+ + addition (and string concatenation)
- - subtraction (and unary minus)
* * multiplication
/ / division
mod % remainder (modulus)
not ! logical “not”
&& && logical “and” (short-circuiting)
|| || logical “or” (short-circuiting)

21

CIS120

Java: Operator Overloading

• The meaning of an operator in Java is determined by the
types of the values it operates on:
– Integer division

4/3 ⇒ 1

– Floating point division
4.0/3.0⇒ 1.3333333333333333

– Automatic conversion from int to float
4/3.0 ⇒ 1.3333333333333333

• Overloading is a general mechanism in Java
– we’ll see more of it later

22

Equality
• like OCaml, Java has two ways of testing reference types for

equality:
– “pointer equality”

o1 == o2
– “deep equality”

o1.equals(o2)

• Normally, you should use == to compare primitive types and
“.equals” to compare objects

CIS120

every object provides an “equals”
method that should “do the right
thing” depending on the class of
the object

24

Strings
• String is a built in Java class
• Strings are sequences of (unicode) characters

"" "Java" "3 Stooges" "富士山"
• + means String concatenation (overloaded)

"3" + " " + "Stooges"Þ "3 Stooges"
• Text in a String is immutable (like OCaml)

– but variables that store strings are not
– String x = "OCaml";
– String y = x;
– Can't do anything to x so that y changes

• The .equals method returns true when two strings
contain the same sequence of characters

CIS120 25

CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 120";
String z = "CIS 120";
boolean ans = x.equals(z);

Answer: true
This is the preferred method of comparing strings!

27

CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x1 = "CIS ";
String x2 = "120";
String x = x1 + x2;
String z = "CIS 120";
boolean ans = (x == z);

Answer: false
Even though x and z both contain the characters “CIS 120”,
they are stored in two different locations in the heap.

29

CIS120

What is the value of ans at the end of this program?

1. true
2. false
3. NullPointerException

String x = "CIS 120";
String z = "CIS 120";
boolean ans = (x == z);

Answer: true(!)
Why? Since strings are immutable, two identical
strings that are known when the program is compiled can be
aliased by the compiler (to save space).

31

Moral

CIS120

Always use s1.equals(s2) to
compare strings!

Compare strings with respect to their
content, not where they happen to be
allocated in memory…

32

Object Oriented Programming

Recap: The OO Style
• Core ideas:

– objects (state encapsulated with operations)
– dynamic dispatch (“receiver” of method call determines behavior)
– classes (“templates” for object creation)
– subtyping (grouping object types by common functionality)
– inheritance (creating new classes from existing ones)

• Good for:
– GUIs!

• complex software systems that include many different implementations of
the same “interface” (set of operations) with different behaviors

– Simulations
• designs with an explicit correspondence between “objects” in the

computer and things in the real world

CIS120 34

"Objects" in OCaml

CIS120

(* The type of counter objects *)
type counter = {

inc : unit -> int;
dec : unit -> int;

}

(* Create a counter “object” *)
let new_counter () : counter =
let r = {contents = 0} in
{
inc = (fun () ->
r.contents <- r.contents + 1;
r.contents);

dec = (fun () ->
r.contents <- r.contents - 1;
r.contents)

}

Why is this an object?

§ Encapsulated local state
only visible to the methods
of the object

§ Object is defined by what it
can do—local state does not
appear in the interface

§ There is a way to construct
new object values that
behave similarly

35

OO terminology
• Object: a structured collection of encapsulated fields

(aka instance variables) and methods
• Class: a template for creating objects
• The class of an object specifies…
– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object

(methods)
– one or more constructors: code that is executed when the

object is created (optional)
• Every (Java) object is an instance of some class

CIS120 36

OO programming

(and C, C++, C#)

• Primitive notion of object
creation (classes, with fields,
methods and constructors)

• Flexibility through extension:
Subtyping allows related
objects to share a common
interface

(part we've seen)

• Explicitly create objects using
a record of higher order
functions and hidden state

• Flexibility through
composition: objects can only
implement one interface

CIS120 37

type button =
widget *
label_controller *
notifier_controller

class Button extends Widget {
/* Button is a subtype

of Widget */

}

public class Counter {

private int r;

public Counter () {
r = 0;

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

}
}

Objects in Java

CIS120

instance variable

constructor

methods

class name
class declaration

constructor
invocation

method call

object creation and use

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println(c.inc());

}
}

38

public class Counter {

private int r;

public Counter () {
r = 0;

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

}
}

Encapsulating local state

CIS120

constructor and
methods can
refer to r

method call

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println(c.inc());

}
}

other parts of the
program can only access
public members

r is private

39

Encapsulating local state
• Visibility modifiers make the state local by

controlling access
• Basically:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

(Java offers a couple of other protection levels — “protected” and
“package protected”. The details are not important at this point.)

CIS120 40

