
Programming Languages 
and Techniques

(CIS120)

Lecture 22

Java: Objects, Interfaces, Static Members
Chapters 19 & 20



Announcements

• Java Bootcamp: TONIGHT 6:00-8:00 pm Towne 100
• HW06: Pennstagram

– Available soon
– Due: Tuesday, November 5 at 11:59:59pm
– Java programming
– We encourage using Eclipse (TAs will do a walkthrough in recitation); 

You can use Codio if you prefer.  Other IDEs at your discretion

• Midterm 2:  Friday, November 8th during lecture time.
• Midterm Course Survey

– Look for a piazza post.

CIS120 2



Object Oriented Programming



The OO Style
• Core ideas:
– Objects: state encapsulated with operations
– Dynamic dispatch: “receiver” of method call determines 

behavior
– Classes: “templates” for object creation
– Subtyping: grouping object types by common functionality
– Inheritance: creating new classes from existing ones

CIS120 5



OO terminology
• Object: a structured collection of encapsulated fields 

(aka instance variables) and methods
• Class: a template for creating objects
• The class of an object specifies…
– the types and initial values of its local state (fields)
– the set of operations that can be performed on the object 

(methods)
– one or more constructors: create new objects by (1) 

allocating heap space, and (2) running code to initialize the 
object (optional, but default provided)

• Every (Java) object is an instance of some class
– Instances are created by invoking a constructor with the new keyword

CIS120 7



public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

} 
}

Objects in Java

CIS120

instance variable

constructor

methods

class name
class declaration

constructor 
invocation

method call

object creation and use

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println( c.inc() );

}
}

8



public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

public int dec () {
r = r - 1;
return r;

} 
}

Encapsulating local state

CIS120

constructor and
methods can 
refer to r

method call

public class Main {

public static void
main (String[] args) {

Counter c = new Counter();

System.out.println( c.inc() );

}
}

other parts of the 
program can only access 
public members

r is private

9



Encapsulating local state 
• Visibility modifiers make the state local by 

controlling access
• Basically*:
– public : accessible from anywhere in the program
– private : only accessible inside the class

• Design pattern — first cut:
– Make all fields private
– Make constructors and non-helper methods public

*Java offers a couple of other protection levels — “protected” and “package protected”.  The 
details are not important at this point.

CIS120 10





What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises 

NullPointerException

public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

}

Counter x;
x.inc();
int ans = x.inc();

Answer: Program raises NullPointerException





What is the value of ans at the end of this program?

1. 1
2. 2
3. 3
4. Program raises 

NullPointerException

public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

}

Counter x = new Counter();
x.inc();
Counter y = x;
y.inc();
int ans = x.inc();

Answer: 3



“Objects” in OCaml vs. Java
(* The type of “objects” *)
type point = {

getX : unit -> int;
getY : unit -> int;
move : int*int -> unit;

}

(* Create an "object" with
hidden state: *)

type position =  
{ mutable x: int; 
mutable y: int; }

let new_point () : point =
let r = {x = 0; y=0} in {
getX = (fun () -> r.x);
getY = (fun () -> r.y);
move = (fun (dx,dy) ->

r.x <- r.x + dx;
r.y <- r.y + dy)

}

public class Point {

private int x;
private int y;

public Point () { 
x = 0;
y = 0;  

}
public int getX () {
return x;

}
public int getY () {
return y;

}
public void move 

(int dx, int dy) {
x = x + dx;
y = y + dy;

} 
}

Type is separate 
from the implementation

Class specifies both type and 
implementation of object values



Interfaces

Working with objects abstractly



Interfaces
• Give a type for an object based on how it can be 

used, not on how it was constructed
• Describe a contract that objects must satisfy
• Example: Interface for objects that have a position 

and can be moved

public interface Displaceable {
public int getX();
public int getY();
public void move(int dx, int dy);

}
No fields, no constructors, no 

method bodies!



public class Point implements Displaceable {
private int x, y;
public Point(int x0, int y0) {
x = x0;
y = y0;

}
public int getX() { return x; }
public int getY() { return y; }
public void move(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Implementing the interface
• A class that implements an interface provides appropriate 

definitions for the methods specified in the interface
• The class fulfills the contract implicit in the interface

methods
required to 
satisfy contract

interfaces 
implemented



Another implementation

public class Circle implements Displaceable {
private Point center;
private int radius;
public Circle(Point initCenter, int initRadius) {
center = initCenter;
radius = initRadius;

}
public int getX() { return center.getX(); }
public int getY() { return center.getY(); }
public void move(int dx, int dy) {
center.move(dx, dy);

}
} Delegation: move the 

circle by moving the 
center

Objects with different
local state can satisfy
the same interface



Another implementation

class ColoredPoint implements Displaceable {
private Point p;
private Color c;
ColoredPoint (int x0, int y0, Color c0) {

p = new Point(x0,y0);
c = c0; 

} 
public void move(int dx, int dy) {

p.move(dx, dy);
}
public int getX() { return p.getX(); }

public int getY() { return p.getY(); }

public Color getColor() { return c; } 
}

Flexibility: Classes 
may contain more 
methods than 
interface requires



Interfaces are types
• Can declare variables of interface type

• Can call m with any Displaceable argument…

• ... but m can only operate on d according to the 
interface

void m(Displaceable d) { … }

obj.m(new Point(3,4));
obj.m(new ColoredPoint(1,2,Color.Black));

d.move(-1,1);
…
… d.getX() …       ⇒ 0
… d.getY() …       ⇒ 3



Using interface types
• Interface variables can refer dynamically, i.e. during 

execution, to objects of any class implementing the interface
• Point, Circle, and ColoredPoint are all subtypes of Displaceable

Displaceable d0, d1, d2;
d0 = new Point(1, 2);
d1 = new Circle(new Point(2,3), 1);
d2 = new ColoredPoint(-1,1, red);
d0.move(-2,0); 
d1.move(-2,0); 
d2.move(-2,0);
…
… d0.getX() …     ⇒ -1
… d1.getX() …     ⇒ 0
… d2.getX() …     ⇒ -3

The class that created the 
object value determines
which move code is executed:
dynamic dispatch



Abstraction
• The interface gives us a single name for all the possible kinds 

of “moveable things.”  This allows us to write code that 
manipulates arbitrary Displaceable objects, without caring 
whether it’s dealing with points or circles.

class DoStuff {
public void moveItALot (Displaceable s) {
s.move(3,3);
s.move(100,1000);
s.move(1000,234651);

}

public void dostuff () {
Displaceable s1 = new Point(5,5);
Displaceable s2 = new Circle(new Point(0,0),100);
moveItALot(s1);
moveItALot(s2);

}
}



Multiple interfaces
• An interface represents a point of view 

…but there can be multiple valid points of view

• Example: Geometric objects
– All can move  (all are Displaceable)
– Some have Color  (are Colored)



Colored interface

• Contract for objects that that have a color
– Circles and Points don’t implement Colored
– ColoredPoints do

public interface Colored {
public Color getColor();

}



ColoredPoints

public class ColoredPoint
implements Displaceable, Colored {

Point center;
private Color color;
public Color getColor() {
return color;

}

…
} 



“Datatypes” in Java

type shape =
| Point of …
| Circle of …

let draw_shape (s:shape) =
begin match s with
| Point … -> … 
| Circle … -> … 
end

interface Shape {
public void draw();

}
class Point implements Shape {

…
public void draw() {
…
}

}
class Circle implements Shape {
…
public void draw() {
…
}

}

OCaml Java



Recap
• Object: A collection of related fields (or instance variables) 

and methods that operate on those fields
• Class: A template for creating objects, specifying 

– types and initial values of fields
– code for methods 

– optionally, a constructor that is run each time a new object is 
created from the class

• Interface: A “signature” for objects, describing a collection of 
methods that must be provided by classes that implement the 
interface

• Object Type: Either a class or an interface (meaning “this 
object was created from a class that implements this 
interface”)



Static Methods and Fields

functions and global state



Java Main Entry Point

• Program starts running at main
– args is an array of Strings (passed in from the command line)
– must be public
– returns void (i.e. is a command)

• What does static mean?

class MainClass {

public static void main (String[] args) {
…

}

}





Static method example
public class Max {

public static int max (int x, int y) {
if (x > y) {

return x;
} else { 

return y;
}

}

public static int max3(int x, int y, int z) {
return max(max(x,y), z);

} 
} public class Main {

public static void main (String[] args) {

System.out.println(Max.max(3,4));
return;

}
}

closest analogue of top-level
functions in OCaml, but
must be a member of some class

Internally (within the
same class), call with just 
the method name

Externally, prefix with 
name of the class

main method must be 
static; it is invoked to 
start the program running



mantra

Static ==  Decided at Compile Time
Dynamic == Decided at Run Time



Static vs. Dynamic Methods
• Static Methods are independent of object values

– Similar to OCaml functions
– Cannot refer to the local state of objects (fields or normal methods)

• Use static methods for:
– Non-OO programming 
– Programming with primitive types:  Math.sin(60), Integer.toString(3), 

Boolean.valueOf(“true”)
– “public static void main”

• “Normal” methods  are dynamic
– Need access to the local state of the particular object on which they 

are invoked
– We only know at runtime which method will get called

void moveTwice (Displaceable o) {
o.move (1,1); o.move(1,1);

}



Method call examples
• Calling a (dynamic) method of an object (o) that returns a number: 

• Calling a static method of a class (C) that returns a number: 

• Calling a method that returns void:

• Calling a static or dynamic method in a method of the same class: 

• Calling (dynamic) methods that return objects:

o.m();

x = o.m() + 5; 

x = o.m().n(); 
x = o.m().n().x().y().z().a().b().c().d().e(); 

m();

C.m();

x = C.m() + 5;

Static Dynamic

this.m();C.m();Static DynamicEither





Which static method can we add to this class?

public class Counter {

private int r;

public Counter () { 
r = 0; 

}

public int inc () {
r = r + 1;
return r;

}

// A,B, or C here ?

}

public static int dec () {
r = r – 1;
return r;  

} 

Answer: C

public static int inc2 () {
inc();
return inc();  

} 

public static int getInitialVal () {
return 0;  

} 

A.

B.

C.



Static vs. Dynamic Class Members
public class FancyCounter {
private int c = 0;
private static int total = 0;

public int inc () {
c += 1;
total += 1;
return c;

}

public static int getTotal () {
return total;

}
} FancyCounter c1 = new FancyCounter();

FancyCounter c2 = new FancyCounter();
int v1 = c1.inc();
int v2 = c2.inc();
int v3 = c1.getTotal();
System.out.println(v1 + " " + v2 + " " + v3);



Static Class Members
• Static methods can depend only on other static things

– Static fields and methods, from the same or other classes

• Static methods can create new objects and use them
– This is typically how main works

• public static fields are the "global" state of the program
– Mutable global state should generally be avoided
– Immutable global fields are useful: for constants like pi 

public static final double PI = 3.14159265359793238462643383279;


