Programming Languages and Techniques (CIS120)

Lecture 25

Java ASM, Subtyping Chapter 23 and 24

Announcements

- HW6: Java Programming (Pennstagram)
 - Tuesday, November 5 at 11:59:59pm

- Upcoming: Midterm 2
 - Friday, November 8th in class
 - Coverage: mutable state, queues, deques, GUI, Java

Revenue of the Son of the Abstract Stack Machine

The Java Abstract Stack Machine

Objects, Arrays, and Static Methods

Java Abstract Stack Machine

- Similar to OCaml Abstract Stack Machine
 - Workspace
 - Contains the currently executing code
 - Stack
 - Remembers the values of local variables and "what to do next" after function/method calls
 - Heap
 - Stores reference types: objects and arrays

- Everything, including stack slots, is mutable by default
- Objects store dynamic type information:
 what class was used to create them
- Arrays store type information and length field
- New component: Class table (coming soon)

Java Primitive Values

• The values of these data types occupy (less than) one machine word and are stored directly in the stack slots.

Туре	Description	Values
byte	8-bit	-128 to 127
short	16-bit integer	-32768 to 32767
int	32-bit integer	-2^{31} to 2^{31} - 1
long	64-bit integer	-2^{63} to 2^{63} - 1
float	32-bit IEEE floating point	
double	64-bit IEEE floating point	
boolean	true or false	true false
char	16-bit unicode character	'a' 'b' '\u0000'

Heap Reference Values

Arrays

- Type of values that it stores
- Length field (immutable)
- Values for all of the array elements

length *never*mutable;
elements *always*mutable

Objects

- Name of the class that constructed it
- Values for all of the fields

```
class Node {
   private int elt;
   private Node next;
```

}

•••

Node		
elt	1	
next	null	

fields may or may not be mutable public/private not tracked by ASM

Workspace

```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```

Stack

<u>Heap</u>

```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```



```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```



```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```



```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```



```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```



```
ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);
```


Resizable Arrays

```
Object Invariant: extent is
public class ResArray {
                                                  always 1 past the last nonzero
                                                        value in data
  /** Constructor, takes no arguments. */
                                                  (or 0 if the array is all zeros)
  public ResArray() { ... }
  /** Access the array at position i. If position i has not yet
   * been initialized, return 0.
  public int get(int i) { ... }
  /** Modify the array at position i to contain the value v. */
  public void set(int i, int v) { ... }
  /** Return the extent of the array. */
  public int getExtent() { ... }
  /** The smallest prefix of the ResArray
   * that contains all of the nonzero values, as a normal array.
  public int[] values() { ... }
```

Values Method

```
public int[] values() {
    int[] values = new int[extent];
    for (int i=0; i<extent; i++) {
       values[i] = data[i];
    }
    return values;
}</pre>
```

Or maybe we can do it more straightforwardly? ...

```
public int[] values() {
    return data;
}
```

```
ResArray x = new ResArray();
x.set(3,2);
int[] y = x.values();
y[3] = 0;
```



```
ResArray x = new ResArray();
x.set(3,2);
int[] y = x.values();
y[3] = 0;
```



```
ResArray x = new ResArray();
x.set(3,2);
int[] y = x.values();
y[3] = 0;
```


Objects in the ASM

What does the heap look like at the end of this program?

```
Counter[] a = { new Counter(), new Counter() };
Counter[] b = { a[0], a[1] };
a[0].inc();
b[0].inc();
int ans = a[0].inc();

public class Counter {
    private int r;

public Counter () {
    r = 0;
    }
```

public int inc () {

r = r + 1; return r;

What does the following program print?

```
public class Node {
  public int elt:
  public Node next;
  public Node(int e0, Node n0) {
    elt = e0;
    next = n0;
public class Test {
 public static void main(String□ args) {
    Node n1 = new Node(1, null);
    Node n2 = new Node(2, n1);
    Node n3 = n2;
    n3.next.next = n2;
    Node n4 = new Node(4, n1.next);
    n2.next.elt = 9;
    System.out.println(n1.elt);
}
```

9

NullPointerException

```
1 - 9
                            or 0 for "NullPointerException"
public class Node {
  public int elt;
  public Node next;
  public Node(int e0, Node n0) {
    elt = e0;
    next = n0;
public class Test {
  public static void main (String[] args) {
    Node n1 = new Node(1, null);
    Node n2 = new Node(2,n1);
    Node n3 = n2;
    n3.next.next = n2;
    Node n4 = new Node(4,n1.next);
    n2.next.elt = 9;
    System.out.println(n1.elt);
                                             Answer: 9
}
```

What does the following program print?

```
Node n1 = new Node(1,null);
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;
```

<u>Stack</u> <u>Heap</u>

```
<u>Stack</u>
```

<u>Heap</u>

```
Node n1 = ,
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;
```

Node
elt 1
next null

Note: we're skipping details here about how the constructor works. We'll fill them in in a later lecture. For now, assume the constructor allocates and initializes the object in one step.

```
Node n2 = new Node(2,n1);
Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;
```


Workspace <u>Stack</u> <u>Heap</u> Node Node n2 = 4; n1 Node n3 = n2; n3.next.next = n2; elt Node n4 = new Node(4,n1.next); null next n2.next.elt = 9;Node elt next

Node n3 = n2;
n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

n3.next.next = n2;
Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

<u>Workspace</u>

Node n4 = new Node(4,n1.next);
n2.next.elt = 9;

<u>Workspace</u>

 $\underline{\text{n2.next.elt}} = 9;$

Quick Review: Java Types and Interfaces

Review: Static Types

- Types stop you from using values incorrectly
 - -3 + true
 - (new Counter()).m()
- All expressions have types
 - -3 + 4 has type int
 - "A".toLowerCase() has type String
- How do we know if x.m() is correct? or x+3?
 - depends on the type of x
- Type restrictions preserve the types of variables
 - assignment "x = 3" must be to values with compatible types
 - methods "o.m(3)" must be called with compatible arguments

HOWEVER: in Java, values can have multiple types....

Interfaces

- Give a type for an object based on what it does, not on how it was constructed
- Describes a contract that objects must satisfy
- Example: Interface for objects that have a position and can be moved

```
public interface Displaceable {
  public int getX();
  public int getY();
  public void move(int dx, int dy);
}
No fields, no constructors, no
```

method bodies!

Implementing the interface

 A class that implements an interface must provide appropriate definitions for the methods specified in the interface

```
public class Point implements Displaceable {
               private int x, y;
               public Point(int x0, int y0) {
                 x = x0;
                                                    interfaces
                                                    implemented
                 y = y0;
               public int getX() { return x; }
               public int getY() { return y; }
methods
               public void move(int dx, int dy) {
required to
                 x = x + dx;
satisfy contract
                 y = y + dy;
```

Another implementation

```
public class Circle implements Displaceable {
  private Point center;
  private int radius;
  public Circle(int x, int y, int initRadius) {
    Point center = new Point(x, y);
    radius = initRadius;
  public int getX() { return center.getX(); }
  public int getY() { return center.getY(); }
  public void move(int dx, int dy) {
    center.move(dx, dy);
            Objects with different
            local state can satisfy
            the same interface
```

Implementing multiple interfaces

```
public interface Area {
   public double getArea();
}

public class Circle implements Displaceable. Area {
```

```
public class Circle implements Displaceable, Area {
  private Point center;
  private int radius;
  // constructor
 // implementation of Displaceable methods
  // new method
  public double getArea() {
     return Math.pi * radius * radius;
  }
                                      Classes can implement
                                      multiple interfaces by
}
                                      including all of the
                                      required methods 46
```

Assume Circle implements the Displaceable interface. The following snippet of code typechecks:

True

False

Assume Circle implements the Displaceable interface. The following snippet of code typechecks:

```
// in class C
public static void moveItALot (Displaceable s) {
    ... //omitted
}

... // elsewhere
Circle c = new Circle(new Point(10,10),10);
C.moveItAlot(c);
```

- 1. True
- 2. False

Answer: True

Subtyping

Definition: Type A can be declared to be a *subtype* of type B if values of type A can do anything that values of type B can do. Type B is called a *supertype* of A.

Example: A class that implements an interface declares a subtyping relationship

Subtypes and Supertypes

- An interface represents a point of view about an object
- Classes can implement multiple interfaces

Types can have many different supertypes / subtypes

Subtype Polymorphism*

Main idea:

Anywhere an object of type A is needed, an object that actually belongs to a subtype of A can be provided.

```
// in class C
public static void leapIt(Displaceable c) {
    c.move(1000,1000);
  }
// somewhere else
C.leapIt(new Circle (p, 10));
```

- If B is a subtype of A, it provides all of A's (public) methods
- The behavior of a nonstatic method (like move) depends on B's implementation

Subtyping and Variables

 A a variable declared with type A can store any object that is a subtype of A

```
Displaceable a = new Circle(new Point(2,3), 1);

supertype of Circle subtype of Displaceable
```

 Methods with parameters of type A must be called with arguments that are subtypes of A

Extension

Interface Extension – An interface that *extends* another interface declares a subtype

Class Extension – A class that *extends* another class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing interfaces.

```
public interface Displaceable {
  int getX();
                                             The Shape type includes all
  int getY();
                                            the methods of Displaceable
  void move(int dx, int dy);
                                               and Area, plus the new
                                              getBoundingBox method.
public interface Area {
  double getArea();
public interface Shape extends Displaceable, Area {
   Rectangle getBoundingBox();
                                        Note the "extends" keyword.
```

Interface Hierarchy


```
class Point implements Displaceable {
    ... // omitted
}
class Circle implements Shape {
    ... // omitted
}
class Rectangle implements Shape {
    ... // omitted
}
```

- Shape is a subtype of both Displaceable and Area.
- Circle and Rectangle are both subtypes of Shape; by transitivity, both are also subtypes of Displaceable and Area.
- Note that one interface may extend several others.
 - Interfaces do not necessarily form a tree, but the interface hierarchy has no cycles.

Class Extension: Inheritance

- Classes, like interfaces, can also extend one another.
 - Unlike interfaces, a class can extend only one other class.
- The extending class inherits all of the fields and methods of its superclass, and may include additional fields or methods.
 - This captures the "is a" relationship between objects (e.g. a Car is a Vehicle).
- Design Tip: Class extension should never be used when "is a" does not relate the subtype to the supertype.

Simple Inheritance

- In *simple inheritance*, the subclass only *adds* new fields or methods.
- Use simple inheritance to share common code among related classes.
- Example: Circle, and Rectangle have identical code for getX(), getY(), and move() methods when implementing Displaceable.

Class Extension: Inheritance

```
public class DisplaceableImpl implements Displaceable {
   private int x; private int y;
   public DisplaceableImpl(int x, int y) { ... }
   public int getX() { return x;}
   public int getY() { return y; }
   public void move(int dx, int dy) { x += dx; y += dy; }
}
public class Circle extends DisplaceableImpl
                                    implements Shape {
   private int radius;
   public Circle(Point pt, int radius) {
    super(pt.getX(),pt.getY());
    this.radius = radius;
  public double getArea() { ... }
  public Rectangle getBoundingBox() { ... }
```

Subtyping with Inheritance

Example of Simple Inheritance

See: Shapes.zip

Inheritance: Constructors

- Contructors are not inherited
 - Instead, each subclass constructor should invoke a constructor of the superclass using the keyword super
 - Super must be the first line of the subclass constructor
 - if the parent class constructor takes no arguments, it is OK to omit the explicit call to super (it will be supplied automatically)

```
public Circle(Point pt, int radius) {
    super(pt.getX(),pt.getY());
    this.radius = radius;
}
```

Class Object

```
public class Object {
  boolean equals(Object o) {
    ... // test for equality
  }
  String toString() {
    ... // return a string representation
  }
    ... // other methods omitted
}
```

- Object is the root of the class tree
 - Classes with no "extends" clause implicitly extend Object
 - Arrays also implement the methods of Object
 - This class provides methods useful for all objects to support
- Object is the top (i.e., "most super") type in the subtyping hierarchy

Recap

Other forms of inheritance

- Java has other features related to inheritance (some of which we will discuss later in the course):
 - A subclass might override (re-implement) a method already found in the superclass.
 - A class might be abstract i.e. it does not provide implementations for all
 of its methods (its subclasses must provide them instead)
- These features are tricky to use properly, and the need for them arises only in somewhat special cases
 - Designing complex, reusable libraries
 - Special methods like equals and toString
- We recommend avoiding all forms of inheritance (even "simple inheritance") whenever possible: use interfaces and composition instead

Especially: Avoid method overriding except in a few special cases