Programming Languages
and Techniques
(C1S120)

Lecture 25

Java ASM, Subtyping
Chapter 23 and 24

Announcements

e HW6: Java Programming (Pennstagram)
— Tuesday, November 5 at 11:59:59pm

* Upcoming: Midterm 2
— Friday, November 8% in class
— Coverage: mutable state, queues, deques, GUI, Java

The Java Abstract Stack Machine

Objects, Arrays, and Static Methods

Java Abstract Stack Machine

Similar to OCaml Abstract Stack Machine

— Workspace
* Contains the currently executing code

— Stack

e Remembers the values of local variables and
"what to do next" after function/method calls

— Heap
» Stores reference types: objects and arrays

Key differences:
— Everything, including stack slots, is mutable by default

— Objects store dynamic type information:
what class was used to create them

— Arrays store type information and length field
— New component: Class table (coming soon)

Java Primitive Values

* The values of these data types occupy (less than) one
machine word and are stored directly in the stack slots.

byte
short
int
long
float
double
boolean
char

8-bit

16-bit integer

32-bit integer

64-bit integer

32-bit IEEE floating point
64-bit IEEE floating point
true or false

16-bit unicode character

-128 to 127
-32768 to 32767
_231 o 231 - 1
_D63 o 263 - 1]

true false
'a' 'b' "\u0000'

Heap Reference Values

Arrays

* Type of values that it stores
* Length field (immutable)

* Values for all of the array
elements

int [] a =
{0, 0,7, 03},

length never
length 4 mutable;

elements always

®|®|7|® mutable

Objects

e Name of the class that

constructed it

e Values for all of the fields

class Node {

private int elt;
private Node next;

elt 1

next | null

fields may

or may not be
mutable
public/private not
tracked by ASM

ResArray ASM

Stack

Workspace

ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);

Heap

ResArray ASM

Workspace

ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);

Stack Heap

data
extent

ResArray ASM

Workspace

ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

ResArray x = new ResArray(Q);
x.set(3,2);
x.set(4 1),
x.set(4,0);

Stack Heap

ResArray
data
extent

oJojo2]1]ojojo

ResArray ASM

Workspace

ResArray x = new ResArray(Q);
x.set(3,2);
x.set(4 1),
x.set(4,0);

Stack Heap

ResArray
data
extent

oJojo2]1]ojojo

ResArray ASM

Workspace

ResArray x = new ResArray():

data
extent

Resizable Arrays

Object Invariant: extent is
public class ResArray { always 1 past the last nonzero

value in data
/** Constructor, takes no arguments. */

public ResArray() { .. }

(or O if the array is all zeros)

/** Access the array at position i. If position 1 has not yet
* been initialized, return 0.
*/

public int get(int i) { .. }

/** Modify the array at position 1 to contain the value v. */
public void set(int i, int v) { .. }

/*¥* Return the extent of the array. */
public int getExtent() { .. }

/*¥* The smallest prefix of the ResArray
* that contains all of the nonzero values, as a normal array.
*/
public int[] valuesQ { .. }
¥

Values Method

public int[] values() {
int[] values = new int[extent];
for (int 1=0; i<extent; 1++) {
values[i] = data[i];
hy

return values;

Or maybe we can do it more straightforwardly? ...

public int[] values() {
return data;
h

ResArray ASM

Workspace

ResArray x = new ResArray(Q);
x.set(3,2);

int[] y = x.values(Q);

y[3] = ©;

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

data
extent

ResArray ASM

Workspace

data

extent

A\
invariant violation!

What does the heap look like at the end of this program?

Counter[] a = { new Counter(), new Counter(Q) };
Counter[] b = { a[@], a[1] };

al@].inc(); Tic cl
b[@].1incO; public class Counter {

int ans = a[@].incQ;

private int r;

public Counter O {
r=20;
ks

public int inc O {
r=r + 1;
return r;

}

What does the ASM look like at the end of this program?

Counter[] a = { new Counter(), new Counter() };
Counter[] b = { a[@], a[1] };

al@].inc(); :
b[@0].incQ); public class Counter {

int ans = a[@].incQ;

private int r;

public Counter O {

r=20;
Stack Heap ¥
public int inc O {
r=r + 1;
return r;

}

"
What does the following program print?

public class Node {
public int elt; [1
public Node next;
public Node(int e@, Node n@) {
elt = eB;
next = n@;
} 5

public class Test {
public static void main(String[] args) {

Node nl = new Node(l,null); €5
Node n2 = new Node(2,nl);
Node n3 = nZ;
n3.next.next = nZ;
Node n4 = new Node(4,nl.next); 77
n2.next.elt = 9;
System.out.printin(nl.elt);

9

NullPointerException

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

What does the following program print?
1-9

or O for "NullPointerException"

public class Node {

public int elt;
public Node next;
public Node(int e@, Node n@) {
elt = e0;
next = no;
}
}

public class Test {
public static void main (String[] args) {

Node nl = new Node(l,null);
Node n2 = new Node(2,nl);
Node n3 = nZ;

n3.next.next = nZ;
Node n4 = new Node(4,nl.next);
nZ.next.elt = 9;

System.out.printin(nl.elt); Answer: 9

Workspace
Node nl = new Node(1,null);
Node nZ2 = new Node(2,nl);
Node n3 = nZ;
n3.next.next = nZ;
Node n4 = new Node(4,nl.next);

nZ.next.

elt = 9;

%2

>~

Heap

Workspace Stack Heap

Node nl =¢(/,

Node nZ2 = new Node(2,nl);
Node n3 = nZ; ¢) elt 1
n3.next.next = nZ; hext I null
Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Note: we’re skipping details here about

how the constructor works. We'll fill them in

in a later lecture. For now, assume the constructor
allocates and initializes the object in one step.

Workspace

Node nZ2 = new Node(2.nl);
Node n3 = nZ;

n3.next.next = nZ;
Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

nl

Heap

elt 1

next | null

Workspac

Node nZ2

y AN

Node n3
n3.next.

Node n4
nZ.next.

= nZ;

next = nZ;

= new Node(4,nl.next);
elt = 9;

Stack

nl

Heap

elt 1

next | null

next | ~—

»

Workspace

Node n3 = nZ;

n3.next.next = nZ;

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

nl

n2

[

Heap
elt 1
next | null

next | ~—

»

Workspace

n3.next.next = nZ;
Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Stack

Heap

nl

n2

I m elt 1

next | null

n3

»

Workspace

n3.next.n€t = n2;
Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

Workspace

n3.next.

t = nZ;

Node n4 =

new Node(4,nl.next);

n2.next.elt = 9;

Workspace

Node n4 = new Node(4,nl.next);
n2.next.elt = 9;

n2

I m elt

next |

n3

»

Workspac
/

Node n4 _d ;
n2.next.elt = 9;

Workspace

nZ2.next.elt = 9;

Workspace Stack Heap

Workspace

nZ.next €t = 9;

_©

000900 Programming

Quick Review:
Java Types and Interfaces

Review: Static Types

Types stop you from using values incorrectly
— 3 + true

— (new Counter()).m()

All expressions have types
— 3 + 4 hastype int
— “A"” .toLowerCase() hastype String

How do we know if x.m() iscorrect? or x+37?
— depends on the type of x

Type restrictions preserve the types of variables
— assignment "x = 3" must be to values with compatible types

— methods "0.m(3)" must be called with compatible arguments

HOWEVER: in Java, values can have multiple types....

Interfaces

* Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved — keyword

public interfaceéﬂ{splaceable {
public int getX();
public 1int getY();
public void move(int dx, int dy);
¥

No fields, no constructors, no

method bodies!

43

Implementing the interface

* Aclass that implements an interface must provide

appropriate definitions for the methods specified in the
interface

methods
required to
satisfy contract

—_

public class Point implements Displaceable {

private int x, vy; N\\
public Point(int x@, int y@) {

X = x@; interfaces

y y@; implemented
ks
public int getX() { return x; }
public int getY() { return y; }
public void move(int dx, int dy) {

X = X + dx;

y =y + dy;
}
¥

44

Another implementation

public class Circle implements Displaceable {

h

private Point center;

private int radius;

public Circle(int x, 1int y, int initRadius) {
Point center = new Point(x, y);
radius = initRadius;

s

public int getX() { return center.getX(); }

public int getY() { return center.getY(); }

public void move(int dx, int dy) {
center.move(dx, dy);

s

Objects with different

local state can satisfy
the same interface

45

Implementing multiple interfaces

public interface Area {
public double getArea();
ks

public class Circle implements Displaceable, Area {
private Point center;
private int radius;
// constructor
// implementation of Displaceable methods

// new method
public double getArea() {
return Math.pi1 * radius * radius;

¥ Classes can implement
multiple interfaces by
including all of the

required methods .

"Assume Circle implements the Displaceable.
interface. The following snippet of code
typechecks:

True

// in class C
public static void movelItALot (Displaceable s) {
.. //omitted

}

.. // elsewhere
Circle ¢ = new Circle(new Point(10,10),10);
C.moveltAlot(c);

False

. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .

Assume Circle implements the Displaceable interface.
The following snippet of code typechecks:

// 1in class C

public static void moveItALot (Displaceable s) {
.. //omitted
¥

.. // elsewhere
Circle ¢ = new Circle(new Point(10,10),10);
C.moveltAlot(c);

1. True
2. False

Answer: True

48

Subtyping

Definition: Type A can be declared to be a subtype of type B
if values of type A can do anything that values of type B can
do. Type Bis called a supertype of A.

Example: A class that implements an interface declares a
subtyping relationship

Subtypes and Supertypes

* An interface represents a point of view about an object

e C(Classes can implement multiple interfaces

interfaces
Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

classes

Types can have many different supertypes / subtypes

50

Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that
actually belongs to a subtype of A can be provided.

// 1n class C

public static void leapIt(Displaceable c) {
c.move(1000,1000);

¥

// somewhere else
C.leapIt(new Circle (p, 10));

e If Bisasubtype of A, it provides all of A’s (public) methods

* The behavior of a nonstatic method (like move) depends on
B’s implementation

*polymorphism = “many shapes” 51

Subtyping and Variables

A avariable declared with type A can store any object that is
a subtype of A

Displaceable a = new Circle(new Point(2,3), 1);

N\ N\

supertype of Circle subtype of Displaceable

 Methods with parameters of type A must be called with
arguments that are subtypes of A

52

Extension

Interface Extension — An interface that extends
another interface declares a subtype

Class Extension — A class that extends another
class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
int getX(Q);
int getY(Q);
void move(int dx, int dy);

}

public interface Area {
double getArea();
ks

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
h

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the “extends” keyword. [~

54

Interface Hierarchy

. class Point implements Displaceable {
Displaceable Area) omitted
¥
4“\\\\\\\\\ /////ﬂ' class Circle implements Shape {
. // omitted
Shape ¥ _
i e class Rectangle implements Shape {
J -~ ~ . // omitted
Point Circle Rectangle 3}

» Shape is a subtype of both Displaceable and Area.

e Circle and Rectangle are both subtypes of Shape; by
transitivity, both are also subtypes of Displaceable and Area.

* Note that one interface may extend several others.

— Interfaces do not necessarily form a tree, but the interface hierarchy
has no cycles.

Class Extension: Inheritance

* Classes, like interfaces, can also extend one another.
— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all of the fields and
methods of its superclass, and may include
additional fields or methods.

— This captures the “is a” relationship between objects
(e.g. a Car is a Vehicle).

)

* Design Tip: Class extension should never be used when “is a’
does not relate the subtype to the supertype.

Simple Inheritance

In simple inheritance, the subclass only adds new fields or
methods.

Use simple inheritance to share common code among related
classes.

Example: Circle, and Rectangle have identical code for getX(),
getY(), and move() methods when implementing Displaceable.

58

Class Extension: Inheritance

public class DisplaceableImpl implements Displaceable {
private int x; private int y;
public DisplaceableImpl(int x, int y) { .. }
public int getX() { return x;}
public int getY() { return y; }
public void move(int dx, int dy) { X += dx; y += dy; }
¥
public class Circle extends DisplaceableImpl
implements Shape {
private int radius;
public Circle(Point pt, int radius) {
super(pt.getX(),pt.getY());
this.radius = radius;
¥
public double getArea() { .. }
public Rectangle getBoundingBox() { .. }

59

Subtyping with Inheritance

Displaceable Area
-
Displaceablélmpl \ /
Shape

Point Circle Rectangle
-Type C is a subtype of D if D is reachable from C
by following zero or more edges upwards in the
Extends .
hierarchy.
= = = = Implements
- e.g. Circle is a subtype of Area, but Point is not

Example of Simple Inheritance

See: Shapes.zip

Inheritance: Constructors

e Contructors are not inherited

— Instead, each subclass constructor should invoke a
constructor of the superclass using the keyword super

— Super must be the first line of the subclass constructor

* if the parent class constructor takes no arguments, it is OK to
omit the explicit call to super (it will be supplied
automatically)

public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}

62

Class Object

public class Object {
boolean equals(Object o) {
.. // test for equality

¥
String toString() {

.. // return a string representation

}
// other methods omitted

Object is the root of the class tree

— Classes with no “extends” clause implicitly extend Object
— Arrays also implement the methods of Object
— This class provides methods useful for all objects to support

Object is the top (i.e., “most super”) type in the subtyping hierarchy

63

Recap

Displaceablelmpl

Point

Circle

Extends

= = = = Implements

Subtype by fiat

classes (form a tree)

interfaces

Displaceable Area
Shape
S

Recta ng|e - Interfaces extend (possibly many) interfaces
- Classes implement (possibly many) interfaces

- Classes (except Object) extend exactly one

other class (Object by default)
- Interface types (and arrays) are subtypes “by

fiat” of Object

Other forms of inheritance

Java has other features related to inheritance (some of which we
will discuss later in the course):

— A subclass might override (re-implement) a method already found in the
superclass.

— A class might be abstract —i.e. it does not provide implementations for all
of its methods (its subclasses must provide them instead)

These features are tricky to use properly, and the need for them
arises only in somewhat special cases

— Designing complex, reusable libraries
— Special methods like equals and toString

We recommend avoiding all forms of inheritance (even “simple

inheritance”) whenever possible: use interfaces and composition
instead

Especially: Avoid method overriding except in a few
special cases

65

