Programming Languages
and Techniques
(C1S120)

Lecture 26

Static Types vs. Dynamic Classes,

The Java ASM, Java Generics
Chapter 24

Announcements

Java Programming (Pennstagram)
— Tuesday, November 5 at 11:59:59pm

Upcoming: Midterm 2
— Friday, November 8% in class

— Coverage: mutable state, queues, deques, GUI, Java material up
to TODAY (simple inheritance, "this")

Exam Logistics:
— Last Names A— M go to Leidy Labs 10 (here)
— Last N\ames N—-Z go to College Hall 200 (COLL 200)

Midterm Review Session:

— Wednesday, November 6% 6:00-8:00pm in Towne 100
— RSVP on Piazza

Extension

Interface Extension — An interface that extends
another interface declares a subtype

Class Extension — A class that extends another
class declares a subtype

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
int getX(Q);
int getY(Q);
void move(int dx, int dy);

}

public interface Area {
double getArea();
ks

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
h

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the “extends” keyword. [~

Interface Hierarchy

. class Point implements Displaceable {
Displaceable Area) omitted
¥
4“\\\\\\\\\ /////ﬂ' class Circle implements Shape {
. // omitted
Shape ¥ _
i e class Rectangle implements Shape {
J -~ ~ . // omitted
Point Circle Rectangle 3}

» Shape is a subtype of both Displaceable and Area.

e Circle and Rectangle are both subtypes of Shape; by
transitivity, both are also subtypes of Displaceable and Area.

* Note that one interface may extend several others.

— Interfaces do not necessarily form a tree, but the interface hierarchy
has no cycles.

Class Extension: Inheritance

* Classes, like interfaces, can also extend one another.
— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all of the fields and
methods of its superclass, and may include
additional fields or methods.

— This captures the “is a” relationship between objects
(e.g. a Car is a Vehicle).

)

* Design Tip: Class extension should never be used when “is a’
does not relate the subtype to the supertype.

Simple Inheritance

In simple inheritance, the subclass only adds new fields or
methods.

Use simple inheritance to share common code among related
classes.

Example: Circle, and Rectangle have identical code for getX(),
getY(), and move() methods when implementing Displaceable.

Subtyping with Inheritance

Displaceable Area
-
Displaceablélmpl \ /
Shape

Point Circle Rectangle
-Type C is a subtype of D if D is reachable from C
by following zero or more edges upwards in the
Extends .
hierarchy.
= = = = Implements
- e.g. Circle is a subtype of Area, but Point is not

Example of Simple Inheritance

See: Shapes.zip

Inheritance: Constructors

e Contructors are not inherited

— Instead, each subclass constructor should invoke a
constructor of the superclass using the keyword super

— Super must be the first line of the subclass constructor

* if the parent class constructor takes no arguments, it is OK to
omit the explicit call to super (it will be supplied
automatically)

public Circle(Point pt, int radius) {

super(pt.getX(),pt.getY());
this.radius = radius;

}

10

Class Object

public class Object {
boolean equals(Object o) {
.. // test for equality

¥
String toString() {

.. // return a string representation

}
// other methods omitted

Object is the root of the class tree

— Classes with no “extends” clause implicitly extend Object
— Arrays also implement the methods of Object
— This class provides methods useful for all objects to support

Object is the top (i.e., “most super”) type in the subtyping hierarchy

11

Recap

Displaceablelmpl

Point

Circle

Extends

= = = = Implements

Subtype by fiat

classes (form a tree)

interfaces

Displaceable Area
Shape
S

Recta ng|e - Interfaces extend (possibly many) interfaces
- Classes implement (possibly many) interfaces

- Classes (except Object) extend exactly one

other class (Object by default)
- Interface types (and arrays) are subtypes “by

fiat” of Object

Other forms of inheritance

Java has other features related to inheritance (some of which we
will discuss later in the course):

— A subclass might override (re-implement) a method already found in the
superclass.

— A class might be abstract —i.e. it does not provide implementations for all
of its methods (its subclasses must provide them instead)

These features are tricky to use properly, and the need for them
arises only in somewhat special cases

— Designing complex, reusable libraries
— Special methods like equals and toString

We recommend avoiding all forms of inheritance (even “simple

inheritance”) whenever possible: use interfaces and composition
instead

Especially: Avoid method overriding except in a few
special cases

13

Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes

The static type of an expression is a type that describes what
we know about the expression at compile-time (without
thinking about the execution of the program)

Displaceable x;

The dynamic class of an object is the class that it was created
from at run time

X = new Point(2,3)

In OCaml, we only had static types

In Java, we also have dynamic classes because of objects
— The dynamic class will always be a subtype of its static type
— The dynamic class determines what methods are run

What is the static type of a1 on line A?

public Area asArea (Area a) Area
{ return a; }

Point p = new Point(5,5)
Circle ¢ = new Circle (p,3); I
Area al = c; // A CIrCle

__B__ y = asArea (c); PJ()f]EE C)f
classes (forma I

Object J tree)"
| o : « the above

s Not well
Point Circle Rectangle ty p e d

Extends

.. Implements
Subtype by fiat

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Static type vs. Dynamic type

public Area asArea (Area a)
{ return a; } What is the static

type of al on line A?

Point p = new Point(5,5)
Circle ¢ = new Circle (p,3);

Area al = c; // A 1. Area
2. Circle
__B__y = asArea (c); 3. None of the above

4. Not well typed

Displaceable Area

->
-
-
-
-
-
-
-

Displaceablelmpl

Shape
e Area

Point Circle Rectangle

Extends 17
= = = = Implements
+++ e+« Subtvpe bv fiat

What is the dynamic class of al when
execution reaches A?

public Area asArea (Area a)

{ return a; } Area

Point p = new Point(5,5)

Circle ¢ = new Circle (p,3); .
Area al = c; // A Cerle
__B__ y = asArea (c); None Of
Object nntrad i |
et the above
E Di's';ilafzeablé """ Area
Displapéqblelmpl \‘S];a'p': N Ot W e“
Po?nt Cir.cle Rectangle ty p e d
~T77 Extends
S ape by fiat

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Static type vs. Dynamic type

public Area asArea (Area a)
{ return a; } What is the dynamic

class of al when
execution reaches A?

Point p = new Point(5,5)
Circle ¢ = new Circle (p,3);

Area al = c; // A 1. Area
2. Circle
__B__y = asArea (c); 3. None of the above

4. Not well typed

Obje(c};(t /’ 't?l.a.s.,ses (form a tree) | /

Displaceable Area

s 4
-
-
-
-
-
-
-
-

Displaceablelmpl

Shape .
/1 \ — Circle

Point Circle Rectangle

Extends

19
= = = = Implements
++++++ Subtype by fiat

" What type could we declare for x (in blank :
B)?

public Area asArea (Area a)

{ return a; } Area

Point p = new Point(5,5)

Circle ¢ = new Circle (p,3); .
Area al = c; // A Cerle
__B__ y = asArea (c); None Of
Object nntrad i |
et the above
E Di's';ilafzeablé """ Area
Displapéqblelmpl \‘S];a'p': N Ot W e“
Po?nt Cir.cle Rectangle ty p e d
~T77 Extends
S ape by fiat

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .

Static type vs. Dynamic type

public Area asArea (Area a)
{ return a; } What type could we
declare for x (in blank
B)?
Point p = new Point(5,5)

Circle ¢ = new Circle (p,3);

Area al = c; // A 1. Area
2. Circle

__B__y = asArea (c); 3. Either of the above
4. Not well typed

Obje(c};(t /’ 't?l.a.s.,ses (form a tree) | /

Displaceable Area

- \ /
Displaceablelmpl

Shape
/ 1 \ STt Area

Point Circle Rectangle

Extends
21

= = = = Implements
-+« Subtype by fiat

Inheritance and Dynamic Dispatch

When do constructors execute?
How are fields accessed?
What code runs in a method call?
What is ‘this’?

ASM refinement: The Class Table

Workspace Stack Heap Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

¥

X + d; }

The class table contains:
* the code for each method,
* references to each class’s parent, and
* the class’s static members.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void decQ{incBy(-y);}

this

* Inside a non-static method, the variable th1is is a reference
to the object on which the method was invoked.

References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {

this.f = other.f;

¥
¥

Stack

this

"
—+>
f)

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

¥

// .. somewhere in main:
Decr d = new Decr(2);
d.dec(Q);

int x = d.get(Q);

X + d; }

..with Explicit this and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0;
public void incBy(int d) { this.x = thi
public int get() { return this.x; }

hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

¥

// .. somewhere in main:
Decr d = new Decr(2);
d.dec(Q);

int x = d.get(Q);

Constructing an Object

Workspace

Decr d = new Decr(2);
d.decQ);
int x = d.get(Q);

Stack

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter
extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void decQ{incBy(-y);}

Allocating Space on the Heap

Workspace Stack
super(); b
this.y = initY; int x = d.getO;

this -
initY | 2|

Invoking a constructor:

» allocates space for a new object
in the heap

* includes slots for all fields of all
ancestors in the class tree
(here: x and y)

e creates a pointer to the class —
this is the object’s dynamic type

* runs the constructor body after
pushing parameters and this
onto the stack

Note: fields start with a
“sensible” default
- 0 for numeric values
-null for references

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Calling super

Workspace Stack
super(); B
this.y = initY; int x = d.getO;

this ~—
initY | 2|
Call to super:

* The constructor (implicitly) calls
the super constructor

* Invoking a
method or constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Abstract Stack Machine

Workspace Stack
ﬁiL”?fillg:l? Bdecty;
thlS.X = 0; int x = d.getQ);

(Running Object’s default
constructor omitted.)

this

O

initY

L 2]

Eﬁis.y = initY;

this

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Assigning to a Field

Workspace

Stack

Decr d = _;
d.decQ);
int x = d.getQ);

this

O

initY

L 2]

Eﬁis.y = initY;

this

Assignment into the this.x field

goes in two steps:

- look up the value of this in the

stack

- write to the “X” slot of that

object.

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

__Assigning to a Field

Stack Heap Class Table

Decr d = _;
d.decQ);

Object

int x = d.getQ);

String toString(){..

this "~

boolean equals..

initY | z|

Eﬁis.y = initY;

Counter

this S

extends Object

Counter() { x = 0; }

Assignment into the this.x field

goes in two steps: void incBy(int d){.}
- look up the value of this in the e @Eed) e s
stack
- write to the “x” slot of that
: Decr
object.

extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Done with the call

Workspace Stack Heap

. Decr d = _;
) d.decQ);

int x = d.getQ);

this ~— I 0 I

initY | z|

Eﬁis.y = initY;

this S

Done with the call to “super”, so
pop the stack to the previous
workspace.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Continuing

Workspace Stack Class Table
this.y = initY; Decr 4= = Object

int x = d.getQ);

String toString(){..

this "~

boolean equals..

initY | z|

Counter

extends Object

Counter() { x = 0; }

Continue in the Decr class’s
constructor. void incBy(int d){.}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Abstract Stack Machine

Workspace

Stack

this.vy

Decr d = _;
d.decQ);

int x = d.getQ);

this "~

initY | z|

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Assigning to a field

Workspace Stack Heap Class Table

Decr d = _;

this.y = 2; d.decO:

Object

int x = d.getQ);

String toString(){..

boolean equals..

Counter
extends Object

Counter() { x = 0; }

Assignment into the this.y
field. void incBy(int d){..}

int get() {return x;}

(This really takes two steps as we
saw earlier, but we’re skipping

some for the sake of brevity...) Decr

extends Counter

Decr(int initY) { .. }

void decQ{incBy(-y);}

Done with the call

Workspace Stack

. Decr d = _;
) d.decQ);

int x = d.getQ);

this "~

initY | 2|

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the th1is pointer).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Returnmg the Newly Constructed Object

Workspaﬁ/

Decr d =/

d.decO);
int x = d.get(Q);

Stack

Continue executing the program.

_g

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Allocating a local variable

Workspace Stack

d.decQ; 2

L]

int x = d.get(Q);

Allocate a stack slot for the local
variable d. Note that it’s mutable...
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes

and just assume the contents can
be modified.

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Workspace

Dynamic Dispach: Finding the Code

od ecZ); : I ’ I

int x = d.get(Q);

Invoke the dec method on the

object. The code is found by

“pointer chasing” through the class

hierarchy. Search through the

This is an example of dynamic
dispatch: Which code is run

methods of the Decr,
class trying to find one
called dec.

depends on the dynamic class of
the object. (In this case, Decr.)

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

dec(O{incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace Stack

this.incBy(-this.y); g

L]

int x = d.getQ);

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments

(none in this case).

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Reading a Field’s Contents

Workspace Stack

this.incBy(-#V); d

int x = d.getQ);

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Dynamic Dispatch, Again

_,erﬁEEQ(—Z); d

L]

int x = d.getQ);

this

Invoke the incBy method on the
object via dynamic dispatch.

In this case, the incBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr
class looking for one
called 1ncBy.

If the search fails,
recursively search the
parent classes.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

void incBy(int d){..}

int get() {return x;}

Decr

extends Counter

Decr(int ip4

dec){incBy(-y);}

Running the body of 1nCBYy

Workspace Stack Heap

this.x = this.x + d; d

int x = d.getQ);

X ‘r’lt String toString(){..

this

this.x

I
I
N

It takes a few steps...
Body of 1ncBy::
-reads this.x
- looks up d
- computes result this.x + d
- stores the answer (-2) in this.X

Class Table

Object

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

After a few more steps...

Workspace Stack

int x = d.get(Q); d I‘/

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again...

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

After yet a few more steps...

Workspace

Stack

|¢’

L -2]

Done! (Phew!)

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void decQ{incBy(-y);}

Summary: this and dynamic dispatch

* When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, represented as a pointer into the class table, is included in
the object structure in the heap

If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table
— This process of dynamic dispatch is the heart of OOP!

Once the code for m has been determined, a binding for this is pushed
onto the stack.

— The th1is pointer is used to resolve field accesses and method invocations
inside the code.

What is the value of x at the end of this
computation?

public class Counter { ()
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

class Decr extends Counter { 1
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }
}
// .. somewhere in main: :Z
Decr d = new Decr(2);
d.dec();
int x = d.getQ);

NullPointerException

Doesn't type check

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Inheritance Example

public class Counter {

private int x;

public Counter O { x = 0;
public void incBy(int d) {
public int get() { return x;

}

class Decr extends Counter {

private int y;

}
X

=X + d; }
}

public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

¥

// .. somewhere in main:
Decr d = new Decr(2);

d.dec(Q);
int x = d.get(Q);

Answer: -2

What is the value of x
at the end of this
computation?

. -2
-1
. 0
.1
2
NPE
Doesn't type

check

NOoO U BRWNRE

Static members and the Java ASM

Static Members

 (Classes in Java can also act as containers for code and data.

e The modifier stat1c means that the field or method is
associated with the class and not instances of the class.

You can do a static assighment

to initialize a static field.
class C { é,,/””/

public static int x = 23;
public static int someMethod(int y) { return C.x + y; }
public static void main(String args[]) {

-
}

// Elsewhere:
C.x = C.x + 1;
C.someMethod(17);

\ Access to the static member uses the class name

C.xorC.foo()

Based on your understanding of ‘this’, is it possible to
refer to ‘this’ in a static method?

1. No
2. Yes
3. I'm not sure

Class Table Associated with C

* The class table entry for C
C has a field slot for X. :
\ extends Object
« Updatesto C.X modify static x I 23|
the contents of this ratic int I
slot: C.X = 17 static int someMethod(int y) {

return x + y; }
static void main(String args[])

{-}

e A static field is a global variable

— There is only one heap location for it (in the class table)

— Modifications to such a field are visible everywhere the field is
 if the field is public, this means everywhere

— Use with care!

Static Methods (Details)

Static methods do not have access to a th1s pointer
— Why? There isn’t an instance to dispatch through!
— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course a static method can create instance of objects (via hew) and
then invoke methods on those objects.

Gotcha: It is possible (but confusing) to invoke a static method
as though it belongs to an object instance.

— e.g. o0.someMethod(17) where someMethod is static

Subtype Polymorphism

VS.

Parametric Polymorphism

Review: Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that is
a subtype of A can be provided.

e If Bisasubtype of A, it provides all of A’s (public) methods.

*polymorphism = many shapes

|s subtype
polymorphism
enough?

Mutable Queue Interface in OCaml|

module type QUEUE =

sig
(* type of the data structure *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Add a value to the end of the queue *)
val eng : 'a -> 'a queue -> unit

(* Remove the front value and return it (if any) *)
val deq : 'a queue -> ‘a

(* Determine if the queue 1s empty *)
val is_empty : ‘a queue -> bool
end

How can we

translate this
interface to Java?

Java Interface using Subtyping

module type QUEUE = interface ObjQueue {
sig

type 'a queue
// no constructors

val create : unit -> 'a queue // in an 1interface

public void enq(Object elt);

val enq : 'a -> 'a queue -> unit
val deq : 'a queue -> 'a public Object deq();
. public boolean isEmpty();
val is_empty : 'a queue -> bool
hy
end

OCaml Java

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

¥
ObjQueue g = ..; What type should we write for A?
g.enq(" CIS 120 "); 1. String
—A-— X = q.deq(); 2. Object
3. ObjQueue
4. None of the above

ANSWER: Object

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deqQ);
public boolean isEmpty();

h

ObjQueue g = ..; trim is a method of the
’ String class (removes

q.enq(" CIS 120 "); extra spaces)

Object x = q.deq();
System.out.println(x.trim());| < Does this line type check

1. Yes

2. No

ANSWER: No 3. Itdepends

Subtype Polymorphism

interface ObjQueue {
public void enq(Object elt);
public Object deq();
public boolean isEmpty();

}

ObjQueue q = ..; What type for B?
q.enq(" CIS 120 "); 1. Point

Object x = q.deq(); 2. Object
g.enq(new Point(0.0,0.0)); 3. ObjQueue
——-B—— ¥y = 0.deq(); 4. None of the above

ANSWER: Object

Parametric Polymorphism (a.k.a. Generics)

e Main idea:

Parameterize a type (i.e. interface or class) by another type.

public interface Queue<E> {
public void enq(E o);
public E deq();
public boolean isEmpty(Q);

}

 The implementation of a parametric polymorphic interface
cannot depend on the implementation details of the
parameter.

— the implementation of engcannot invoke any methods on ‘0’
(except those inherited from Object)

— i.e. the only thing we know about E is that it is a subtype of Object

Generics (Parametric Polymorphism)

public interface Queue<E> {
public void enq(E o0);
public E deq(Q);
public boolean isEmpty(Q);

}

Queue<String> q = ..;

q.enq(" CIS 120 ");
String x = q.deq(Q); // What type of x? String
System.out.println(x.trim()); // Is this valid? Yes!
g.enq(new Point(0.0,0.0)); // Is this valid? No!

|

Subtyping and Generics

Subtyping and Generics*®

Queue<String> gs =
Queue<Object> qo =

go.enqg(new Object(
String s = gs.deq(

new QueueImpl<String>(); Ok? Sure!

as,

D))
D,

Ok? Let’s see..

Ok? guess
0k? Noooo'

Java generics are invariant:

— Subtyping of arguments to generic types does not imply subtyping
between the instantiations:

Object
:
[
[
|

[
String

but...

Queue<Object>

Hardest part to
learn about
generics and
subtyping...

Queue<String>

* Subtyping and generics interact in other ways too. Java supports bounded
polymorphism and wildcard types, but those are beyond the scope of CIS 120.

Subtyping and Generics

Which of these are true, assuming that class Queuelmpl<E>
implements interface Queue<E>?

1. Queuelmpl<Queue<String>> is a subtype of
Queue<Queue<String>>

2. Queue<Queuelmpl<String>> is a subtype of
Queue<Queue<String>>

3. Both
4. Neither

Answer: 1

Other subtleties with Generics

* Unlike OCaml, Java classes and methods can be generic only
with respect to reference types.
— Not possible to do: Queue<int>
— Must instead do: Queue<Integer>

* Java Arrays cannot be generic
— Not possible to do:

class C<E> {
E[] genericArray;
public CO {

genericArray = new E[];
¥

}

