
Programming Languages
and Techniques

(CIS120)

Lecture 28

Enumerations, Overriding Methods, Equality
Chapters 25 and 26

Announcements
• Upcoming: Midterm 2

– Friday, November 8th in class
– Coverage: mutable state, queues, deques, GUI, Java material up to Friday (simple

inheritance, "this")
– Chapters 11-24

• Exam Logistics:
– Last Names A – M go to Leidy Labs 10 (here)
– Last Names N – Z go to College Hall 200 (COLL 200)

• Java Programming: Chat Server & Client
– Available soon, due on November 19th

• Midterm Review Session:
– TONIGHT 6:00-8:00pm in Towne 100
– RSVP on Piazza

• Extra Office Hours: Dr. Sheth on Thursday 3:00-5:00pm

The Java Collections Library

A case study in subtyping and generics...
that is also very useful...

(But many pitfalls and Java idiosyncrasies!)

Sets and Maps*

Set<E>

TreeSet<E>

SortedSet<E>

HashSet<E>

Collection<E>

Map<K,V>

SortedMap<K,V>

HashMap<K,V>

TreeMap<K,V>

*Read javadocs before instantiating these classes! There are some
important details to be aware of to use them correctly.

TreeSet Demo

implement Comparable when using SortedSets
and Sorted Maps

TREESET DEMO

Implement Comparable when using SortedSets and Sorted Maps.

See TreeSetExample.java and Point.java

import java.util.*;

class Point {
private final int x, y;
public Point(int x0, int y0) { x = x0; y = y0; }
public int getX(){ return x; }
public int getY(){ return y; }

}

public class TreeSetDemo {
public static void main(String[] args) {

Set<Point> s = new TreeSet<Point>();
s.add(new Point(1,1));

}
}

Buggy Use of TreeSet implementation

Exception in thread "main" java.lang.ClassCastException:
Point cannot be cast to java.base/java.lang.Comparable

at java.base/java.util.TreeMap.compare(TreeMap.java:1291)
at java.base/java.util.TreeMap.put(TreeMap.java:536)
at java.base/java.util.TreeSet.add(TreeSet.java:255)
at TreeSetDemo.main(TreeSetDemo.java:14)

RUNTIME
ERRROR

A Crucial Detail of TreeSet

Constructor Detail
TreeSet

public TreeSet()

Constructs a new, empty tree set, sorted according to the natural
ordering of its elements. All elements inserted into the set must
implement the Comparable interface. Furthermore, all such
elements must be mutually comparable: e1.compareTo(e2) must
not throw a ClassCastException for any elements e1 and e2 in
the set. …

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

The Interface Comparable

public interface Comparable<T>

This interface imposes a total ordering on the objects of
each class that implements it. This ordering is referred
to as the class's natural ordering, and the class's
compareTo method is referred to as its natural
comparison method. …

Methods of Comparable

import java.util.*;

class Point implements Comparable<Point> {
private final int x, y;
public Point(int x0, int y0) { x = x0; y = y0; }
public int getX(){ return x; }
public int getY(){ return y; }

public int compareTo(Point o) {
if (this.x < o.x) {

return -1;
} else if (this.x > o.x) {

return 1;
} else if (this.y < o.y) {

return -1;
} else if (this.y > o.y) {

return 1;
}
return 0;

}
}

Adding Comparable to Point

Point p1 = new Point(0,1);
Point p2 = new Point(0,2);
p1.compareTo(p2); // -1
p2.compareTo(p1); // 1
p1.compareTo(p1); // 0

Digging Deeper into Comparable

It is strongly recommended (though not required) that natural
orderings be consistent with equals. This is so because sorted sets
(and sorted maps) without explicit comparators behave
"strangely" when they are used with elements (or keys) whose
natural ordering is inconsistent with equals. In particular, such a
sorted set (or sorted map) violates the general contract for set (or
map), which is defined in terms of the equals method.

How do we change the definition of equals?

Method Overriding

When a subclass replaces an inherited
method with its own re-definition…

A Subclass can Override its Parent
class C {

public void printName() { System.out.println("I’m a C");
}
}

class D extends C {
public void printName() { System.out.println("I’m a D");

}
}

// somewhere in main
C c = new D();
c.printName();

What gets printed to the console?

1. I’m a C
2. I’m a D
3. NullPointerException
4. NoSuchMethodException

Answer: I'm a D

A Subclass can Override its Parent

• Our ASM model for dynamic dispatch already explains what will happen
when we run this code.

• Useful for changing the default behavior of classes.
• But… can be confusing and difficult to reason about if not used carefully.

class C {
public void printName() { System.out.println("I’m a C"); }

}

class D extends C {
public void printName() { System.out.println("I’m a D"); }

}

// somewhere in main
C c = new D();
c.printName();

Overriding Example
Workspace Stack Heap

C c = new D();
c.printName();›

Class Table

C
extends

C() { }

void printName(){…}

D
extends

D() { … }

void printName(){…}

Object
String toString(){…

boolean equals…

…

Overriding Example
Workspace Stack Heap

c.printName();

Class Table

C
extends

C() { }

void printName(){…}

D
extends

D() { … }

void printName(){…}

Object
String toString(){…

boolean equals…

…

Dc

Overriding Example
Workspace Stack Heap

.printName();

Class Table

C
extends

C() { }

void printName(){…}

D
extends

D() { … }

void printName(){…}

Object
String toString(){…

boolean equals…

…

Dc

Overriding Example
Workspace Stack Heap

System.out.
println(“I’m a D”);

Class Table

C
extends

C() { }

void printName(){…}

D
extends

D() { … }

void printName(){…}

Object
String toString(){…

boolean equals…

…

Dc

this

Difficulty with Overriding
class C {

public void printName() {
System.out.println("I'm a " + getName());

}

public String getName() {
return "C";

}
}

class E extends C {

public String getName() {
return "E";

}
}

// in main
C c = new E();
c.printName();

What gets printed to the console?

1. I’m a C
2. I’m a E
3. NullPointerException

Answer: I’m a E

Difficulty with Overriding
class C {

public void printName() {
System.out.println("I'm a " + getName());

}

public String getName() {
return "C";

}
}

class E extends C {

public String getName() {
return "E";

}
}

// in main
C c = new E();
c.printName();

The C class might be
in another package, or a
library...

Whoever writes E might
not be aware of the
implications of
changing getName.

Overriding the getName method
causes the behavior of printName
to change!

– Overriding can break
invariants/abstractions relied upon
by the superclass.

Case study: Equality

A common, but tricky, situation where overriding
is needed

Consider this example
public class Point {

private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }

public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main…
List<Point> l = new LinkedList<Point>();
l.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

What gets printed to the console?

1. true
2. false

Why?

Answer: False

From Java API:

public interface Collection<E> extends Iterable<E>

…
Many methods in Collections Framework interfaces are defined in
terms of the equals method. For example, the specification for
the contains(Object o) method says: "returns true if and only
if this collection contains at least one element e such
that (o==null ? e==null : o.equals(e)). …

The Object class implements the .equals method using
reference equality (i.e. ==).
We want structural equality for Points in this example.

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html%23equals-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html%23contains-java.lang.Object-

When to override equals
• In classes that represent immutable values

– String overrides equals for this reason
– Our Point class is another good candidate

• When there is a “logical” notion of equality
– The collections library overrides equality for Sets

(e.g. two sets are equal if and only if they contain equal elements)

• Whenever instances of a class might need to serve as
elements of a set or as keys in a map
– The collections library uses equals internally to define set

membership and key lookup
– (This is the problem with the example code)

When not to override equals
• When each instance of a class is inherently unique

– Often the case for mutable objects (since their state might change, the
only sensible notion of equality is identity)

– Classes that represent “active” entities rather than data (e.g. threads,
gui components, etc.)

• When a superclass already overrides equals with the desired
functionality.
– Usually the case when a subclass is implemented by adding only new

methods, but not fields

How to override equals

with some gotcha's and pitfalls along the way

The contract for equals
• The equals method implements an equivalence relation on non-null

objects. Assuming x, y, and z, are all not null:

• reflexive: x.equals(x) == true

• symmetric: x.equals(y) == y.equals(x)

• transitive:
if x.equals(y) == true and y.equals(z) == true
then x.equals(z) == true.

• consistent:
multiple invocations of x.equals(y) consistently return true or consistently return
false, provided no information used in comparisons on the object is modified

• x.equals(null) == false

Directly from: http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html - equals(java.lang.Object)

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html%23equals(java.lang.Object)

First attempt
public class Point {
private final int x;
private final int y;
public Point(int x, int y) {this.x = x; this.y = y;}
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Point that) {
return (this.getX() == that.getX() &&

this.getY() == that.getY());
}

}

Gotcha: overloading, vs. overriding
public class Point {
…
// overloaded, not overridden
public boolean equals(Point that) {
return (this.getX() == that.getX() &&

this.getY() == that.getY());
}

}
Point p1 = new Point(1,2);
Point p2 = new Point(1,2);
Object o = p2;
System.out.println(p1.equals(o));
// prints false!
System.out.println(p1.equals(p2));
// prints true!

The type of equals as declared in Object is:
public boolean equals(Object o)

The implementation above takes a Point, not an Object, so there are two different
equals methods in Point!

Overloading is when there are
multiple methods in a class
with the same name that take
arguments of different types.
Java uses the static type of the
argument to determine which
method to invoke.

A Useful Sanity Check
public class Point {
…
@Override
public boolean equals(Point that) {
return (this.getX() == that.getX() &&

this.getY() == that.getY());
}

}
Compilation will yield an error in this
case (because this method does not

override anything from the superclass)

Optional declaration documents programmer’s
intent that this method overrides another one

Adding @Override here will alert us that there is a problem.
Now, how do we fix it??

instanceof
• The instanceof operator tests the dynamic type of any object

• null is not an instanceof any type

• But… important to use instanceof judiciously – usually, dynamic
dispatch is better.

Point p = new Point(1,2);
Object o1 = p;
Object o2 = "hello";
System.out.println(p instanceof Point);

// prints true
System.out.println(o1 instanceof Point);

// prints true
System.out.println(o2 instanceof Point);

// prints false
System.out.println(p instanceof Object);

// prints true

Type Casts
• We can test whether o is a Point using instanceof

• Answer: Use a type cast: (Point) o
– At compile time: the expression (Point) o has type Point.
– At runtime: check whether the dynamic type of o is a subtype of Point, if so

evaluate to o, otherwise raise a ClassCastException
– As with instanceof, use casts judiciously – i.e. almost never. Instead use

generics.

@Override
public boolean equals(Object o) {
boolean result = false;

if (o instanceof Point) {
// o is a point - how do we treat it as such?

}
return result;

}

Check whether o
is a Point.

Refining the equals implementation

@Override
public boolean equals(Object o) {

boolean result = false;
if (o instanceof Point) {

Point that = (Point) o;
result = (this.getX() == that.getX() &&

this.getY() == that.getY());
}
return result;

}

This cast is
guaranteed to

succeed.

Whew. Are we done?
• If we never need to make any subclasses of Point, then yes, this works

• In particular, this idiom is good enough for the Chat Server
homework assignment

• But if we do want to make subclasses of Point, then things get a bit
trickier …

What about Subtyping?

Suppose we extend Point like this…
public class ColoredPoint extends Point {
private final int color;
public ColoredPoint(int x, int y, int color) {
super(x,y);
this.color = color;

}

@Override
public boolean equals(Object o) {
boolean result = false;
if (o instanceof ColoredPoint) {
ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));
}
return result;

}
}

New version of
equals is suitably

modified to
check the color

field too

Keyword super is
used to invoke

overridden methods

Broken Symmetry

• The problem arises because we mixed Points and ColoredPoints, but
ColoredPoints have more data that allows for finer distinctions.

• Should a Point ever be equal to a ColoredPoint?

Point p = new Point(1,2);
ColoredPoint cp = new ColoredPoint(1,2,17);
System.out.println(p.equals(cp));

// prints true
System.out.println(cp.equals(p));

// prints false

What gets printed? (1=true, 2=false)

Suppose Points can equal ColoredPoints

I.e., we repair the symmetry violation by checking for Point explicitly

public class ColoredPoint extends Point {
…
public boolean equals(Object o) {

boolean result = false;
if (o instanceof ColoredPoint) {

ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));
} else if (o instanceof Point) {

result = super.equals(o);
}
return result;

}
}

Now are we good? (1=yes, 2=no)

Broken Transitivity

• We fixed symmetry, but broke transitivity!
• Should a Point ever be equal to a ColoredPoint?

Point p = new Point(1,2);
ColoredPoint cp1 = new ColoredPoint(1,2,17);
ColoredPoint cp2 = new ColoredPoint(1,2,42);
System.out.println(p.equals(cp1));

// prints true
System.out.println(cp1.equals(p));

// prints true(!)
System.out.println(p.equals(cp2));

// prints true
System.out.println(cp1.equals(cp2));

// prints false(!!)

No!

Should equality use instanceof?
• To correctly account for subtyping, we need the classes of the

two objects to match exactly.
• instanceof only lets us ask about the subtype relation
• How do we access the dynamic class?

C
extends

C() { }

void printName(){…}

Object
String toString(){…

boolean equals…

…

Class TableWorkspace Stack Heap

c.getClass(); Dc

The o.getClass() method returns an object that represents
o's dynamic class.

Reference equality == on class values is a correct way to
check for class equality (because there is only ever one
object that represents each class).

Overriding equals, take two

Correct Implementation (for Point)
@Override
public boolean equals(Object obj) {

if (obj == null)
return false;

if (getClass() != obj.getClass())
return false;

Point other = (Point) obj;
return (x == other.x && y == other.y);

}

Check whether obj is a Point.

Dynamic cast that checks if
obj is a subclass of Point
(We know it won't fail.)

Overriding Equality in Practice
• This is all a bit complicated!
• Fortunately, some tools (e.g. Eclipse) can autogenerate

equality methods of the kind we developed.
– Just need to specify which fields should be taken into account.

One more gotcha: Equality and Hashing
• The hashCode method in the class Object is supposed to

return an integer value that “summarizes” the entire contents
of an object

• Whenever you override equals you should also override
hashCode in a compatible way
– If o1.equals(o2) then
o1.hashCode() == o2.hashCode()

– hashCode is used by the HashSet and HashMap collections

• Forgetting to do this can lead to extremely puzzling bugs!

Enumerations

Enumerations (a.k.a. Enum Types)
• Java supports enumerated type constructors

– Intended to represent constant data values

• Intuitively similar to a simple usage of OCaml datatypes
– …but each language provides extra bells and whistles that the other

does not

private enum CommandType {
CREATE, INVITE, JOIN, KICK, LEAVE, MESG, NICK

}

Using Enums: Switch

• Multi-way branch, similar to OCaml’s match
– Works for: primitive data ‘int’, ‘byte’, ‘char’, etc., plus Enum types and

String
– Not as powerful as OCaml pattern matching! (Cannot bind

“arguments” of an Enum)

• The default keyword specifies a “catch all” (wildcard) case

// Use of 'enum' in CommandParser.java (PennPals HW)
CommandType t = …

switch (t) {
case CREATE : System.out.println("Got CREATE!"); break;
case MESG : System.out.println("Got MESG!"); break;
default : System.out.println("default");
}

What will be printed by the following program?

1. Got CREATE!
2. Got MESG!
3. Got NICK!
4. default
5. something else

Command.Type t = Command.Type.CREATE;

switch (t) {
case CREATE : System.out.println("Got CREATE!");
case MESG : System.out.println("Got MESG!");
case NICK : System.out.println("Got NICK!");
default : System.out.println("default");

}

Answer: 5 something else!

break
• GOTCHA: By default, each branch will “fall through” into the

next, so that code actually prints:

• Use an explicit break statement to avoid fall-through:

Got CREATE!
Got MESG!
Got NICK!
default

switch (t) {
case CREATE : System.out.println("Got CREATE!");

break;
case MESG : System.out.println("Got MESG!");

break;
case NICK : System.out.println("Got NICK!");

break;
default: System.out.println("default");
}

Enums are Classes
• Enums are a convenient way of defining a class along with

some standard static methods
– valueOf : converts a String to an Enum

Command.Type c = Command.Type.valueOf ("CONNECT");
– values: returns an Array of all the enumerated constants

Command.Type[] varr = Command.Type.values();

• Implicitly extend class java.lang.Enum
• Can include specialized constructors, fields and methods

– Example: ServerError

• See Java manual for more

A Useful Trick

• Multi-way branch, similar to OCaml’s match
– Works for: primitive data ‘int’, ‘byte’, ‘char’, etc., plus Enum types and

String
– Not as powerful as OCaml pattern matching! (Cannot bind

“arguments” of an Enum)

• The default keyword specifies a “catch all” (wildcard) case

public enum ServerError {
OKAY(200),
INVALID_NAME(401),
NO_SUCH_CHANNEL(402),
NO_SUCH_USER(403),
USER_NOT_IN_CHANNEL(404),
USER_NOT_OWNER(406),
…

private final int value;

ServerError(int value) {
this.value = value;

}

public int getCode() {
return value;

}
}

Elements of the enum
can be declared along

with “parameters”

When the object representing each
element is created, the associated

parameters are passed to the
constructor method.

