
Programming Languages
and Techniques

(CIS120)

Lecture 30

Exceptions
Chapter 27

Announcements
• HW7: Chat Server

– Due next Tuesday

• TA position applications are available
– CIS110, 120, 160, 121
– Accepting applications until Sunday, November 24th

– See details on Piazza

• Midterm 2 Status
– grading of makeup exams not quite finished...
– we'll release feedback on Gradescope as soon as we can

Exceptions

Dealing with the unexpected

Why do methods “fail”?
• Some methods expect their arguments to satisfy conditions

– Input to max must be a nonempty list, Item must be non-null, more
elements must be available when calling next, …

• Interfaces may be imprecise
– Some Iterators don't support the "remove" operation

• External components of a system might fail
– Try to open a file or resource that doesn't exist

• Resources might be exhausted
– Program uses all of the computer's

memory or disk space

• These are all exceptional circumstances…
– How do we deal with them?

4

Error 404
Page Not Found!

Ways to handle failure
• Return an error value (or default value)

– e.g. Math.sqrt returns NaN ("not a number") if given input < 0
– e.g. Many Java libraries return null
– e.g. file reading method returns -1 if no more input available
– Caller is supposed to check return value, but it’s easy to forget L
– Use with caution – easy to introduce nasty bugs! L

• Use an informative result
– e.g. in OCaml we used options to signal potential failure
– Passes responsibility to caller, who must do the proper

check to extract value

• Use exceptions
– Available both in OCaml and Java
– Any caller (not just the immediate one) can handle the exception
– If an exception is not caught, the program terminates

5

Exceptions
• An exception is an object representing an abnormal condition

– Its internal state describes what went wrong
– e.g.: NullPointerException,

IllegalArgumentException,
IOException

– Can define your own exception classes

• Throwing an exception is an emergency exit from the current
context
– The exception propagates up the invocation stack until it either

reaches the top of the stack, in which case the program aborts with
the error, or the exception is caught

• Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances
– Java uses try / catch blocks to handle exceptions.

6

Example from Pennstagram HW
private void load(String filename) {

ImageIcon icon;

try {
if ((new File(filename)).exists())

icon = new ImageIcon(filename);
else {

java.net.URL u = new java.net.URL(filename);
icon = new ImageIcon(u);

}
} catch (Exception e) {

throw new RuntimeException(e);
}
…

}

7

Simplified Example

What happens if we do (new C()).foo() ?
1. Program stops without printing anything
2. Program prints “here in bar”, then stops
3. Program prints “here in bar”, then “here in foo”, then stops
4. Something else

class C {
public void foo() {

this.bar();
System.out.println("here in foo");

}
public void bar() {

this.baz();
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

}

Answer: 4* (*well… depends on whether you count stderr as "printing")9

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

10

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

11

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Allocate a new instance of C in the heap. (Skipping
details of trivial constructor for C.)

12

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

13

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
“here in foo”);

Heap

_;

this

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.
Use the dynamic class to lookup the method body from the
class table.

14

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
“here in foo”);

Heap

_;

this

15

Abstract Stack Machine

C

Workspace Stack

this.baz();
System.out.println(
“here in bar”);

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

16

Abstract Stack Machine

C

Workspace Stack

this.baz();
System.out.println(
“here in bar”);

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

17

Abstract Stack Machine

C

Workspace Stack

throw new
RuntimeException();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

this

18

Abstract Stack Machine

C

Workspace Stack

throw new
RuntimeException();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

this

19

Abstract Stack Machine

C

Workspace Stack

throw ();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

this

RuntimeEx
ception

20

Abstract Stack Machine

C

Workspace Stack

throw ();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

this

RuntimeEx
ception

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

21

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

this

RuntimeEx
ception

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

22

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
System.out.println(
“here in bar”);

RuntimeEx
ception

Try/Catch
for ()? No!

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
a try/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

23

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()?

No!

24

Abstract Stack Machine

C

Workspace Stack Heap

_;

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()? No!

25

Abstract Stack Machine

C

Workspace Stack Heap

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Program terminated with
uncaught exception ()!

26

Catching the Exception

• Now what happens if we do (new C()).foo();?

class C {
public void foo() {

this.bar();
System.out.println("here in foo");

}
public void bar() {

try {
this.baz();

} catch (Exception e) { System.out.println("caught"); }
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

}

27

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

28

Abstract Stack Machine
Workspace Stack

(new C()).foo();

Heap

29

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

Allocate a new instance of C in the heap.

30

Abstract Stack Machine

C

Workspace Stack

().foo();

Heap

31

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
“here in foo”);

Heap

_;

this

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the this pointer,
followed by arguments (in this case none) onto the stack.

32

Abstract Stack Machine

C

Workspace Stack

this.bar();
System.out.println(
“here in foo”);

Heap

_;

this

33

try {
baz();

} catch (Exception e)
{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

try {
baz();

} catch (Exception e)
{ System.out.println
(“caught”); }

System.out.println(
“here in bar”);

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

34

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this
When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { … } code.

Replace the current workspace
with the body of the try.

try {
baz();

} catch (Exception e)
{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

try {
baz();

} catch (Exception e)
{ System.out.println
(“caught”); }

System.out.println(
“here in bar”);

35

Abstract Stack Machine

C

Workspace Stack

this.baz();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this
When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { … } code.

Replace the current workspace
with the body of the try.

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

Body of the try.

Everything else.

36

Abstract Stack Machine

C

Workspace Stack

this.baz();

Heap

_;

this

_;
System.out.println(
“here in foo”);

this
Continue executing as normal.

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

37

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

The top of the stack is off the
bottom of the page… J

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

throw new
RuntimeException();

_; 38

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

throw new
RuntimeException();

_; 39

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

_;

throw ();

Runtime
Exception

40

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

_;

throw ();

Runtime
Exception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

41

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

_;

Runtime
Exception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
a try/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Try/Catch
for ()? No!

42

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

_;
catch (Exception e) {
System.out.println
(“caught”); }

System.out.println(
“here in bar”);

RuntimeEx
ception

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then
replace
the workspace with catch body
and the rest of the saved
workspace.

Continue executing as usual.

Try/Catch
for ()?

Yes!

43

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

RuntimeEx
ception

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then
replace
the workspace with catch body
and the rest of the saved
workspace.

Continue executing as usual.

e

{ System.out.println
(“caught”); }

System.out.println(
“here in bar”);

44

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

Continue executing as usual.

e

{ System.out.println
(“caught”); }

System.out.println(
“here in bar”);

45

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

e

{ ; }
System.out.println(
“here in bar”);

Console
caught

Continue executing as usual.

46

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

e

{ ; }
System.out.println(
“here in bar”);

Console
caught

We’re sweeping a few details about
lexical scoping of variables under
the rug – the scope of e is just the
body of the catch, so when that is
done, e must be popped from the
stack.

47

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

Continue executing as usual.

System.out.println(
“here in bar”);

Console
caught

48

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

Continue executing as usual.

System.out.println(
“here in bar”);

Console
caught

49

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

_;
System.out.println(
“here in foo”);

this

Runtime
Exception

Pop the stack when the workspace
is done, returning to the saved
workspace just after the _ mark.

;

Console
caught
here in bar

50

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

System.out.println(
“here in foo”);

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

51

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

System.out.println(
“here in foo”);

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

52

Abstract Stack Machine

C

Workspace Stack Heap

_;

this

;

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar
here in foo

53

Abstract Stack Machine

C

Workspace Stack Heap

Runtime
Exception

Program terminated normally.

Console
caught
here in bar
here in foo

54

When No Exception is Thrown
• If no exception is thrown while executing the body of a try {…}

block, evaluation skips the corresponding catch block.
– i.e. if you ever reach a workspace where “catch” is the statement to

run, just skip it:

catch
(RuntimeException e)
{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

Workspace

System.out.println(
“here in bar”);

Workspace

55

Catching Exceptions
• There can be more than one “catch” clause associated with each “try”

– Matched in order, according to the dynamic class of the exception thrown
– Helps refine error handling

• Good style: be as specific as possible about the exceptions you’re
handling.
– Avoid catch (Exception e) {…} it’s usually too generic!

try {
… // do something with the IO library

} catch (FileNotFoundException e) {
… // handle an absent file

} catch (IOException e) {
… // handle other kinds of IO errors.

}

56

Informative Exception Handling

Exception Class Hierarchy

RuntimeException

Exception Error

Object

Throwable

IllegalArgumentException

IOException

Type of all
throwable objects.

Other subtypes of
Exception must be

declared.

Subtypes of
RuntimeException
do not have to be

declared.

Fatal Errors: should
never be caught.

FileNotFoundException
58

Checked (Declared) Exceptions
• Exceptions that are subtypes of Exception but not RuntimeException

are called checked or declared.

• A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

• The method might raise a checked exception either by:
– directly throwing such an exception

– or by calling another method that might itself throw a checked exception

public void doSomeIO (String file) throws IOException {
Reader r = new FileReader(file); // might throw
…

public void maybeDoIt (String file) throws AnException {
if (…) throw new AnException(); // directly throw
…

59

Unchecked (Undeclared) Exceptions
• Subclasses of RuntimeException do not need to be declared via “throws”

– even if the method does not explicitly handle them.

• Many “pervasive” types of errors cause RuntimeExceptions
– NullPointerException
– IndexOutOfBoundsException
– IllegalArgumentException

• The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover…

public void mightFail (String file) {
if (file.equals(“dictionary.txt”) {

// file could be null!
…

60

Checked vs. Unchecked Exceptions
public class ExceptionQuiz {

public void m(Object x) {
if (x == null)

throw new IllegalArgumentException();
}
public void n(Object y) {

if (y == null) throw new IOException();
}
public void p() {

m(null);
}
public void q() {

n(null);
}
public void r() {

try { n(null); } catch (IOException e) {}
}
public void s() {

n(new Object());
}

}

Which methods need a
"throws" clause?
Note:
IllegalArgumentExcepti
on is a subtype of
RuntimeException.
IOException is not.
1) all of them
2) none of them
3) m and n
4) n only
5) n, r, and s
6) n, q, and s
7) m, p, and s
8) something else

Answer:
n, q and s should say
throws IOException 62

Declared vs. Undeclared?
• Tradeoffs in the software design process:

• Declared: better documentation
– forces callers to acknowledge that the exception exists

• Undeclared: fewer static guarantees (compiler can help less)
– but, much easier to refactor code

• In practice: test-driven development encourages “fail early/fail often”
model of code design and lots of code refactoring, so “undeclared”
exceptions are prevalent.

• A reasonable compromise:
– Use declared exceptions for libraries, where the documentation and usage

enforcement are critical
– Use undeclared exceptions in client code to facilitate more flexible

development

63

Finally

• A finally clause of a try/catch/finally statement always
gets run, regardless of whether there is no exception, a
propagated exception, or a caught exception.

try {
...

} catch (Exn1 e1) {
...

} catch (Exn2 e2) {
...

} finally {
...

}

64

Using Finally
• Finally is often used for releasing resources that might have been

held/created by the try block:

public void doSomeIO (String file) {
FileReader r = null;
try {
r = new FileReader(file);
… // do some IO

} catch (FileNotFoundException e) {
… // handle the absent file

} catch (IOException e) {
… // handle other IO problems

} finally {
if (r != null) { // don’t forget null check!
try { r.close(); } catch (IOException e) {…}

}
}

}

65

Using Finally
class C {

public void foo() {
this.bar();
System.out.println("here in foo");

}
public void bar() {

try {
this.baz();

} catch (Exception e) {
System.out.println("caught");

} finally { System.out.println("finally"); }
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

} What happens if we do (new C()).foo() ?
1. Program prints only "finally"
2. Program prints "here in bar", then "here in foo", then "finally"
3. Program prints "finally", then "caught", then "here in foo"
4. Program prints "caught", then "finally", then "here in bar", then

"here in foo" 67

Answer: 4

Using Finally
class C {

public void foo() {
this.bar();
System.out.println("here in foo");

}
public void bar() {

try {
this.baz();

} catch (Exception e) {
System.out.println("caught");

} finally { System.out.println("finally"); }
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

}

68

Good Style for Exceptions
• In Java, exceptions should be used to capture exceptional

circumstances
– Try/catch/throw incur performance costs and complicate reasoning

about the program, don’t use them when better solutions exist

• Re-use existing exception types when they are meaningful to
the situation
– e.g. use NoSuchElementException when implementing a container

• Define your own subclasses of Exception if doing so can
convey useful information to possible callers that can handle
the exception.

69

Good Style for Exceptions
• It is often sensible to catch one exception and re-throw a

different (more meaningful) kind of exception.
– e.g. when implementing WordScanner (in upcoming lectures), we

catch IOException and throw NoSuchElementException in
the next method.

• Catch exceptions as near to the source of failure as makes
sense
– i.e. where you have the information to deal with the exception

• Catch exceptions with as much precision as you can
BAD: try {…} catch (Exception e) {…}
BETTER: try {…} catch (IOException e) {…}

70

Some Advice on Debugging

Use the Scientific Method
1. Make an observation / ask a question

– One of my test cases fails!
– Which assertion? What exception? What is the stack trace?

2. Formulate a hypothesis
– Could I have passed null as

bar to foo.munge(bar)?
3. Conduct an experiment

– Modify the program to try to confirm
or refute the hypothesis.

– Don't make random changes!
– Predict the outcome of your experiment
– Re-run test cases, or execute the program

4. Analyze the results
– Did the modified code behave as expected?

5. Draw conclusions / Report results
– Create a new test case (if appropriate)

Observing Behavior
• Understand exceptions and their stack traces

– They give you a lot of information

• If you are using Eclipse, it is worth taking a little time to learn
how to use the debugger!
– See Piazza for a Quick Start tutorial

• Simple print statements are also very effective!
– Confirm or disprove hypothesis
– e.g.: The code reached "HERE!" (or not)

