
Programming Languages 
and Techniques

(CIS120)

Lecture 31

I/O & Histogram Demo
Chapter 28



Announcements
• HW7: Chat Server

– Due next Tuesday

• TA position applications are available
– CIS110, 120, 160, 121
– Accepting applications until Sunday, November 24th

– See details on Piazza

• Midterm 2 Status
– released on Gradescope at 1:00PM
– submit regrade requests by Friday, Nov. 22nd



Midterm 2 Grades
• Average: 78.15
• Median: 82.5
• Std. Dev: 15.8

3



Exceptions (recap)



Exceptions
• Exceptions are just objects that affect control flow:
• Raise an exception with:   

throw new ExceptionType();
– aborts the current execution context (workspace)
– "unwinds" the stack, searching for a matching catch block

• Handle exceptions using try/catch:
try { /* code */ } 
catch (ExceptionType e) { /* handler */ }
– runs code
– if code raises an exception that is a subtype of ExceptionType, 

intercept its stack unwinding and run the handler

5



Finally

• A finally clause of a try/catch/finally statement always
gets run, regardless of whether there is no exception, a 
propagated exception, or a caught exception.

try {
...

} catch (Exn1 e1) { 
...

} catch (Exn2 e2) { 
...

} finally {
...

}

6



Using Finally
• Finally is often used for releasing resources that might have been 

held/created by the try block:

public void doSomeIO (String file) {
FileReader r = null;
try {
r = new FileReader(file);
… // do some IO

} catch (FileNotFoundException e) {
… // handle the absent file

} catch (IOException e) {
… // handle other IO problems

} finally {
if (r != null) {    // don’t forget null check! 
try { r.close(); } catch (IOException e) {…}

}
}

} 

7





Using Finally
class C {

public void foo() {
this.bar();
System.out.println("here in foo");

}
public void bar() {

try {             
this.baz();

} catch (Exception e) { 
System.out.println("caught"); 

} finally { System.out.println("finally"); }
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

} What happens if we do (new C()).foo() ?
1. Program prints only "finally"
2. Program prints "here in bar", then "here in foo", then "finally"
3. Program prints  "finally",  then "caught",  then "here in foo"
4. Program prints "caught", then "finally",  then "here in bar",  then 

"here in foo" 9

Answer: 4



Using Finally
class C {

public void foo() {
this.bar();
System.out.println("here in foo");

}
public void bar() {

try {             
this.baz();

} catch (Exception e) { 
System.out.println("caught"); 

} finally { System.out.println("finally"); }
System.out.println("here in bar");

}
public void baz() {

throw new RuntimeException();
}

}

10



Good Style for Exceptions
• In Java, exceptions should be used to capture exceptional

circumstances
– Try/catch/throw incur performance costs and complicate reasoning 

about the program, don’t use them when better solutions exist

• Re-use existing exception types when they are meaningful to 
the situation
– e.g. use NoSuchElementException when implementing a container

• Define your own subclasses of Exception if doing so can 
convey useful information to possible callers that can handle 
the exception.

11



Good Style for Exceptions
• It is often sensible to catch one exception and re-throw a 

different (more meaningful) kind of exception.
– e.g. when implementing WordScanner (in upcoming lectures), we 

catch IOException and throw NoSuchElementException in 
the next method.

• Catch exceptions as near to the source of failure as makes 
sense
– i.e. where you have the information to deal with the exception

• Catch exceptions with as much precision as you can
BAD: try {…} catch (Exception e) {…}
BETTER: try {…} catch (IOException e) {…}

12



java.io



I/O Streams
• The stream abstraction represents a communication channel 

with the outside world.
– can be used to read or write a potentially unbounded number of data 

items (unlike a list)
– data items are read from or written to a stream one at a time 

• The Java I/O library uses subtyping to provide a unified view 
of disparate data sources and sinks.

15



Low-level Streams
• At the lowest level, a stream is a sequence of binary numbers

• The simplest IO classes break up the sequence into 8-bit 
chunks, called bytes. Each byte corresponds to an integer in 
the range 0 – 255.

11000101001011101011011010101010100101…..

197 46 182 170

16



InputStream and OutputStream
• Abstract classes that provide basic operations for the Stream class hierarchy:

• These operations read and write int values that represent bytes
range 0-255 represents a byte value
-1 represents “no more data” (when returned from read)

• java.io provides many subclasses for various sources/sinks of data:
files, audio devices, strings, byte arrays, serialized objects

• Subclasses also provides rich functionality:
encoding, buffering, formatting, filtering

int read ();        // Reads the next byte of data 
void write (int b); // Writes the byte b to the output

17



Binary IO example
InputStream fin = new FileInputStream(filename);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {

for (int j=0; j < data[0].length; j++) {
int ch = fin.read();
if (ch == -1) {

fin.close();
throw new IOException("File ended early");

}
data[j][i] = ch;

}
}
fin.close();

18



BufferedInputStream
• Reading one byte at a time can be slow!
• Each time a stream is read there is a fixed overhead, plus time 

proportional to the number of bytes read. 
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

• A BufferedInputStream presents the same interface to 
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program

19



Buffering Example
FileInputStream fin1 = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(fin1);

int[][] data = new int[width][height];
for (int i=0; i < data.length; i++) {

for (int j=0; j < data[0].length; j++) {
int ch = fin.read();
if (ch == -1) {

fin.close();
throw new IOException("File ended early");

}
data[j][i] = ch;

}
}
fin.close();

20



The Standard Java Streams
java.lang.System provides an InputStream and two standard 
PrintStream objects for doing console I/O.  

System.in

System.err

System.out

Note that System.in, for example, is a static member of the class System – this means that the field “in” is 
associated with the class, not an instance of the class.  Recall that static members in Java act like global variables.

21



PrintStream Methods

• Note the use of overloading: there are multiple methods called println
– The compiler figures out which one you mean based on the number of arguments, 

and/or the static type of the argument you pass in at the method’s call site.
– The java  I/O library uses overloading of constructors pervasively to make it easy to “glue 

together” the right stream processing routines

void println(boolean b); // write b followed by a new line
void println(String s);  // write s followed by a newline 
void println();          // write a newline to the stream

void print(String s);    // write s without terminating the line
(output may not appear until the stream is flushed)

void flush();            // actually output characters waiting to be sent

PrintStream adds buffering and binary-conversion 
methods to OutputStream

22



Character based IO
A character stream is a sequence of 16-bit binary numbers

The character-based IO classes break up the sequence into 16-bit 
chunks, of type char. Each character corresponds to a letter 
(specified by a character encoding).

0000010010100011011011010101010100101…..

\u0251 \uB6AA

593 46,762

‘a’

23



Reader and Writer
• Similar to the InputStream and OutputStream classes, including:

• These operations read and write int values that represent unicode characters
– read returns an integer in the range 0 to 65535 (i.e. 16 bits)
– value -1 represents “no more data” (when returned from read)
– requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

• Like byte streams, the library provides many subclasses of Reader and Writer 
Subclasses also provides rich functionality.
– use these for portable text I/O

• Gotcha: System.in, System.out, System.err are byte streams
– So wrap in an InputStreamReader / PrintWriter if you need unicode console I/O

int read ();        // Reads the next character  
void write (int b); // Writes the char to the output

24



Design Example: Histogram.java

A design exercise using java.io and the 
generic collection libraries  

(SEE COURSE NOTES FOR THE FULL STORY)  



Problem Statement
Write a program that, given a filename for a text file as input, 
calculates the frequencies (i.e. number of occurrences) of each 
distinct word of the file.  The program should then print the 
frequency distribution to the console as a sequence of “word: 
freq” pairs (one per line).

Histogram result:
The : 1
Write : 1
a : 4
as : 2
calculates : 1
command : 1
console : 1
distinct : 1
distribution : 1
e : 1

each : 1
file : 2
filename : 1
for : 1
freq : 1
frequencies : 1
frequency : 1
given : 1
i : 1
input : 1

line : 2
number : 1
occurrences : 1
of : 4
one : 1
pairs : 1
per : 1
print : 1
program : 2
sequence : 1

should : 1
text : 1
that : 1
the : 4
then : 1
to : 1
word : 2

26



27



Decompose the problem
• Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we 
calculate their frequency?

3. Once we have calculated the frequencies, how do we 
print out the result?

• What  is the interface between these components?
• Can we test them individually?

29



How to produce a stream of words?
1. How do we iterate through the text file, identifying all of the 

words?

• Key idea: Define a class (WordScanner) that implements this 
interface by reading words from a text file.

public interface Iterator<T> {
// returns true if the iteration has more elements
public boolean hasNext();
// returns the next element in the iteration
public T next();
// Optional: removes last element returned
public void remove();

}

30



Coding: Histogram.java

WordScanner.java
Histogram.java



Some Advice on Debugging



Use the Scientific Method
1. Make an observation / ask a question

– One of my test cases fails!
– Which assertion?  What exception? What is the stack trace?

2. Formulate a hypothesis
– Could I have passed null as 

bar to foo.munge(bar)?
3. Conduct an experiment

– Modify the program to try to confirm 
or refute the hypothesis.

– Don't make random changes!  
– Predict the outcome of your experiment
– Re-run test cases, or execute the program 

4. Analyze the results
– Did the modified code behave as expected?  

5. Draw conclusions / Report results
– Create a new test case (if appropriate)



Observing Behavior
• Understand exceptions and their stack traces

– They give you a lot of information

• If you are using Eclipse, it is worth taking a little time to learn 
how to use the debugger!
– See Piazza for a Quick Start tutorial

• Simple print statements are also very effective!
– Confirm or disprove hypothesis
– e.g.: The code reached "HERE!" (or not)


