Programming Languages
and Techniques
(C1S120)

Lecture 32

Histogram Demo
Chapter 28

Announcements

HW7: Chat Server

— Due tomorrow, Tuesday November 19t at 11:59pm

HW?O9a: (see next slide)
— Due this Friday!

HWS8: TwitterBot

— Available very soon
— Due: Tuesday, November 26" at 11:59pm
— This is a new project (replacing SpellChecker), so please start early!

Regrade requests for Midterm 2 due by Friday.

HW9: Game project

Game Design Proposal Milestone Due: (8 points)

Friday November 22" at NOON = 11:59AM!!!!

— (Should take about 1 hour)
— Submit on GRADESCOPE
— TAs will give you feedback over the weekend

Final Program Due: (92 points)
Monday, December 9t at 11:59pm

— Submit zipfile online, submission only checks if your code compiles
— Eclipse is STRONGLY recommended for this project
— May distribute your game (after the deadline) if you do not use any of our code

Grade based on demo with your TA during reading days

— Grading rubric on the assighment website
— Recommendation: don’t be too ambitious.

NO LATE SUBMISSIONS PERMITTED

HW9: Game Project

(NN &) Othello

File Edit Help (Pass) White: 2 Black: 5

Planet Game

0 coins 0 coins
Bong 1 bomb 3 bombs

(Instructions Restart Level Quit Objectives Reset

Orbit Cruiser

0 asteraids Polfected

energy

10 Mg effective mass

(PLAY/RESET) (HELP)

Desigh Example: Histogram.java

A design exercise using java.io and the
generic collection libraries

(SEE COURSE NOTES FOR THE FULL STORY)

Problem Statement

Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e. number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:

freq” pairs (one per line).

Histogram result:

The: 1 each:1 line : 2 should : 1
Write : 1 file: 2 number : 1 text: 1
a4 filename : 1 occurrences : 1 that : 1
as: 2 for:1 of : 4 the : 4
calculates : 1 freq:1 one:1 then: 1
command : 1 frequencies : 1 pairs: 1 to: 1
console : 1 frequency : 1 per:1 word : 2
distinct : 1 given : 1 print: 1

distribution : 1 i1 program : 2

e:1 input : 1 sequence: 1

Decompose the problem

e Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

 What is the interface between these components?
 (Can we test them individually?

How to produce a stream of words?

1. How do we iterate through the text file, identifying all of the
words?

public interface Iterator<T> {
// returns true if the iteration has more elements
public boolean hasNext();
// returns the next element in the 1iteration
public T next();
// Optional: removes last element returned
public void remove();

* Key idea: Define a class (WordScanner) that implements this
interface by reading words from a text file.

Coding: Histogram.java

WordScanner.java

Histogram.java

H |
“The The following test indicates that WordScanner

should raise a NullPointerException

True

@Test
public void testNull() {
try {
new WordScanner(null);
} catch (NullPointerException e) {
return;
}
fail();
}

False

. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .

True or False: The following test indicates that
WordScanner should raise a NullPointerException
when called with null.

@Test
public void testNull() {
try {

new WordScanner(null);

} catch (NullPointerException e) {
return;

}

fail();

ANSWER: True

lterator — hasNext() — First Attempt?

@Override
public boolean hasNext() {
boolean value = true;

try {
int ¢ = r.read();
if (c == -1) {
value = false;
¥

} catch (IOException io) A
System.out.println("I0 Exception happened");
I3

return value;

}

public class WordScanner implements Iterator<String> {
private Reader r;

private int c = -1; l & B

}

//

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1.
2.

A.
B.

Which combination Which of the following
properties form a useful invariant for the
WordScanner fields?

1&A

ris not null
ris null if and only if there is no next word
cis 0 if there is no next word and nonzero otherwise 2 & ‘ \
cis -1 if there is no next word and contains the first
character of the next word otherwise

2&B

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

public class WordScanner implements Iterator<String> {
private Reader r;

private int c = -1;
//

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. risnotnull
2. risnullif and only if there is no next word

A. cis QO if there is no next word and nonzero otherwise
B. cis-1if thereis no next word and contains the first
character of the next word otherwise

public class WordScanner implements Iterator<String> {
private Reader r;

private int c = -1;
//

Which combination of the following properties form a useful
invariant for the WordScanner fields?

1. risnotnull
2. risnullif and only if there is no next word

A. cis Qif there is no next word and nonzero otherwise
B. cis-1if thereis no next word and contains the first
character of the next word otherwise

ANSWER: 1 & B

Some Advice on Debugging

Use the Scientific Method

5.

Make an observation / ask a question

— One of my test cases fails!
— Which assertion? What exception? What is the stack trace?

Formulate a hypothesis

— Could I have passed null as
bar to foo.munge(bar)?

Conduct an experiment

— Modify the program to try to confirm
or refute the hypothesis.

— Don't make random changes!
— Predict the outcome of your experiment
— Re-run test cases, or execute the program

Analyze the results
— Did the modified code behave as expected?

Draw conclusions / Report results
— Create a new test case (if appropriate)

Question

Conclude

Observing Behavior

* Understand exceptions and their stack traces

— They give you a lot of information

* If you are using Eclipse, it is worth taking a little time to learn

how to use the debugger!
— See Piazza for a Quick Start tutorial

e Simple print statements are also very effective!

— Confirm or disprove hypothesis
— e.g.: The code reached "HERE!" (or not)

