
Programming Languages
and Techniques

(CIS120)

Lecture 33

Swing I: Drawing and Event Handling
Chapter 29

CIS 120

Announcements
• HW8: TwitterBot

– Available on the web site
– Due: Tuesday, November 26th at 11:59pm
– This is a new project (replacing SpellChecker), so please start early!

• HW9a: (see next slide)
– Due this Friday!

• Regrade requests for Midterm 2 due by Friday.

CIS 120

HW9: Game project
• Game Design Proposal Milestone Due: (8 points)

Friday November 22nd at NOON = 11:59AM!!!!
– (Should take about 1 hour)
– Submit on GRADESCOPE
– TAs will give you feedback over the weekend

• Final Program Due: (92 points)
Monday, December 9th at 11:59pm

– Submit zipfile online, submission only checks if your code compiles
– Eclipse is STRONGLY recommended for this project
– May distribute your game (after the deadline) if you do not use any of our code

• Grade based on demo with your TA during reading days
– Grading rubric on the assignment website
– Recommendation: don’t be too ambitious.

• NO LATE SUBMISSIONS PERMITTED

CIS 120

Coding: Histogram.java

WordScanner.java
Histogram.java

CIS 120

Histogram Example Key Ideas
• Implementing an Iterator<T>

– maintain a "cursor" and some invariants that relate hasNext() and next()

• FileReader (and FileWriter) are easy to use.
– often want BufferedReader / BufferedWriter for "line-at-a-time" access

and better performance
– need to use appropriate exception handling to deal with IOExceptions

• Histogram is just a Map<String,Integer> object
– see also: ProbabilityDistribution in TwitterBot HW

• Easy to write "command line" (a.k.a. terminal apps)
– use the args[] input to main for inputs
– write to System.out for output
– run by doing: "java –cp <bindirc> ClassName"

CIS 120

Some Advice on Debugging

CIS 120

Use the Scientific Method
1. Make an observation / ask a question

– One of my test cases fails!
– Which assertion? What exception? What is the stack trace?

2. Formulate a hypothesis
– Could I have passed null as

bar to foo.munge(bar)?
3. Conduct an experiment

– Modify the program to try to confirm
or refute the hypothesis.

– Don't make random changes!
– Predict the outcome of your experiment
– Re-run test cases, or execute the program

4. Analyze the results
– Did the modified code behave as expected?

5. Draw conclusions / Report results
– Create a new test case (if appropriate)

CIS 120

Observing Behavior
• Understand exceptions and their stack traces

– They give you a lot of information

• If you are using Eclipse, it is worth taking a little time to learn
how to use the debugger!
– See Piazza for a Quick Start tutorial

• Simple print statements are also very effective!
– Confirm or disprove hypothesis
– e.g.: The code reached "HERE!" (or not)

CIS 120

Swing

Java's GUI library

CIS 120

CIS 120

Why study GUIs (yet again)?
• Most common example of event-

based programming
• Heavy and effective use of OO

inheritance
• Case study in library organization

– and some advanced Java features

• Ideas applicable everywhere:
– Web apps
– Mobile apps
– Desktop apps

• Fun!

CIS 120

Terminology overview

GUI (OCaml) Swing

Graphics Context Gctx.gctx Graphics

Widget type Widget.widget JComponent

Basic Widgets button
label
checkbox

JButton
JLabel
JCheckBox

Container Widgets hpair, vpair JPanel, Layouts

Events event ActionEvent
MouseEvent
KeyEvent

Event Listener mouse_listener
mouseclick_listener
(any function of type event -> unit)

ActionListener
MouseListener
KeyListener

CIS 120

Swing practicalities
• Java library for GUI development
– javax.swing.*

• Built on existing library: AWT
– java.awt.*
– When there are two versions of something, use Swing’s.

(e.g., java.awt.Button vs. javax.swing.JButton)
• The “JFoo” version is usually the one you want, not plain “Foo”

• Portable
– Communicates with underlying OS's native window system
– Same Java program looks appropriately different when run

on PC, Linux, and Mac

CIS 120

Simple Drawing

DrawingCanvas.java
DrawingCanvasMain.java

CIS 120

Fractal Drawing Demo

CIS 120

Recursive function for drawing

private static void fractal(Graphics2D gc, int x, int y,
double angle, double len) {

if (len > 1) {
double af = (angle * Math.PI) / 180.0;
int nx = x + (int)(len * Math.cos(af));
int ny = y + (int)(len * Math.sin(af));
gc.setStroke(new BasicStroke(3));
gc.drawLine(x, y, nx, ny);
fractal(gc, nx, ny, angle + 20, len - 8);
fractal(gc, nx, ny, angle - 10, len - 8);

}
}

CIS 120

How do we draw a picture?
• In the OCaml GUI HW, we created widgets whose repaint

function used the graphics context to draw an image

let w_draw : widget =
{

repaint = (fun (gc:gctx) ->
fractal (with_color gc green)

200 450 270 80) ;

size = (fun () -> (200,200));

handle = (fun () -> ())
}

• In Swing, the preferred idiom is to extend the class JComponent …

O
Cam

l

CIS 120

Fundamental class: JComponent
• Analog of widget type from OCaml GUI project

– (Terminology: widget == JComponent)

• Subclasses should override methods of JComponent
– paintComponent (like repaint, displays the component)
– getPreferredSize (like size, calculates the size of the component)

• Events are handled by listeners (don't need to use
overriding…)

• Richer functionality
– minimum/maximum size
– font
– foreground/background color
– borders
– what is visible
– many more…

CIS 120

Simple Drawing Component

public class DrawingCanvas extends JComponent {

// paint the drawing panel on the screen
public void paintComponent (Graphics gc) {

super.paintComponent(gc);

// set the pen color
gc.setColor(Color.GREEN);

// draw a fractal tree
fractal((Graphics2d)gc, 200, 450, 270, 80);

}

// give the size of the drawing panel
public Dimension getPreferredSize() {

return new Dimension(200,200);
}

How do we put this component on the screen?

CIS 120

JFrame
• Represents a top-level window

– Displayed directly by OS (looks different on Mac, PC, etc.)

• Contains JComponents
• Can be moved, resized, iconified, closed
public void run() {

JFrame frame = new JFrame("Tree");

// set the content of the window to be our drawing
frame.getContentPane().add(new DrawingCanvas());

// make sure the application exits when the frame closes
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// resize the frame based on the size of the panel
frame.pack();

// show the frame
frame.setVisible(true);

}

CIS 120

User Interaction

CIS 120

Start Simple: Lightswitch
Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

Key idea: use a ButtonListener to toggle the state of the
"lightbulb"

CIS 120

OnOffDemo

The Lightswitch GUI program in Swing.

CIS 120

Display the Lightbulb
class LightBulb extends JComponent {

private boolean isOn = false;

public void flip() {
isOn = !isOn;

}
public void paintComponent(Graphics gc) {

if (isOn) {
gc.setColor(Color.YELLOW);

} else {
gc.setColor(Color.BLACK);

}
gc.fillRect(0, 0, 100, 100);

}
public Dimension getPreferredSize() {

return new Dimension(100,100);
}

}

Draw the
Light bulb here
using the graphics
context

Set the size of the
window

Remember the private
state of the lightbulb

CIS 120

Main Class
public class OnOff implements Runnable {
public void run() {

JFrame frame = new JFrame("On/Off Switch");
JPanel panel = new JPanel();
frame.getContentPane().add(panel);
LightBulb bulb = new LightBulb();
panel.add(bulb);
JButton button = new JButton("On/Off");
panel.add(button);
button.addActionListener(new ButtonListener(bulb));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
public static void main(String[] args) {

SwingUtilities.invokeLater(new OnOff());
}

}

Open frame and
make a panel

Create bulb and
button

Start the (Swing)
application

CIS 120

Making the Button DO something

class ButtonListener implements ActionListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {

bulb = b;
}

@Override
public void actionPerformed(ActionEvent e) {

bulb.flip();
bulb.repaint();

}
}

Note that “repaint” does not
necessarily do any repainting
now! It is simply a notification to
Swing that something needs
repainting.

