Programming Languages
and Techniques
(C1S120)

Lecture 33

Swing |: Drawing and Event Handling
Chapter 29




Announcements

e HWS: TwitterBot

— Available on the web site
— Due: Tuesday, November 26" at 11:59pm
— This is a new project (replacing SpellChecker), so please start early!

« HWO9a: (see next slide)
— Due this Friday!

* Regrade requests for Midterm 2 due by Friday.

CIS 120




HW9: Game project

 Game Design Proposal Milestone Due: (8 points)

Friday November 22" at NOON = 11:59AM!!!!

— (Should take about 1 hour)
— Submit on GRADESCOPE
— TAs will give you feedback over the weekend

* Final Program Due: (92 points)
Monday, December 9t at 11:59pm

— Submit zipfile online, submission only checks if your code compiles
— Eclipse is STRONGLY recommended for this project
— May distribute your game (after the deadline) if you do not use any of our code

* Grade based on demo with your TA during reading days

— Grading rubric on the assighment website
— Recommendation: don’t be too ambitious.

NO LATE SUBMISSIONS PERMITTED

CIS 120




Coding: Histogram.java

CIS 120

WordScanner.java

Histogram.java




Histogram Example Key Ideas

Implementing an Iterator<T>
— maintain a "cursor" and some invariants that relate hasNext() and next()

FileReader (and FileWriter) are easy to use.

— often want BufferedReader / BufferedWriter for "line-at-a-time" access
and better performance

— need to use appropriate exception handling to deal with IOExceptions

Histogram is just a Map<String,Integer> object
— see also: ProbabilityDistribution in TwitterBot HW

Easy to write "command line" (a.k.a. terminal apps)
— use the args[] input to main for inputs
— write to System.out for output
— run by doing: "java —cp <bindirc> ClassName"




Some Advice on Debugging

CCCCCC




Use the Scientific Method

1. Make an observation / ask a question

— One of my test cases fails!
— Which assertion? What exception? What is the stack trace?

2. Formulate a hypothesis

— Could I have passed null as
bar to foo.munge(bar)?

3. Conduct an experiment

— Modify the program to try to confirm
or refute the hypothesis.

— Don't make random changes!
— Predict the outcome of your experiment
— Re-run test cases, or execute the program

4. Analyze the results
— Did the modified code behave as expected?

5. Draw conclusions / Report results
— Create a new test case (if appropriate)

CIS 120

Question

Conclude




Observing Behavior

* Understand exceptions and their stack traces

— They give you a lot of information

* If you are using Eclipse, it is worth taking a little time to learn

how to use the debugger!
— See Piazza for a Quick Start tutorial

e Simple print statements are also very effective!

— Confirm or disprove hypothesis
— e.g.: The code reached "HERE!" (or not)



Java's GUI library

CIS120



Have you ever used the Swing library to
build a Java app before?

Nope

No, but I've used a different
GUIl library in Java

Yes, but I didn't really
understand how it worked

Yes, I'm an expert

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Why study GUIs (yet again)?

* Most common example of event-
based programming | o

* Heavy and effective use of OO "
inheritance

e (Case study in library organization
— and some advanced Java features

* |deas applicable everywhere:

— Web apps
— Mobile apps

— Desktop apps

* Fun!

CIS 120




Terminology overview

G o E

Graphics Context
Widget type
Basic Widgets

Container Widgets

Events

Event Listener

CIS 120

Gctx.gcetx
Widget.widget

button
label
checkbox

hpair, vpair

event

mouse_listener
mouseclick_listener

(any function of type event -> unit)

Graphics
JComponent

JButton
JLabel
JCheckBox

JPanel, Layouts

ActionEvent
MouseEvent
KeyEvent

ActionListener
MouselListener
KeyListener



Swing practicalities

* Java library for GUI development
— javax.swing.*
* Built on existing library: AWT

— java.awt.*
— When there are two versions of something, use Swing’s.
(e.g., java.awt.Button vs. javax.swing.JButton)
* The “JFoo” version is usually the one you want, not plain “Foo”
* Portable
— Communicates with underlying OS's native window system

— Same Java program looks appropriately different when run
on PC, Linux, and Mac




DrawingCanvas.java

DrawingCanvasMain.java

CIS120



Fractal Drawing Demo

CIS 120

00 @ Tree




Recursive function for drawing

private static void fractal(Graphics2D gc, int x, int vy,
double angle, double len) {

if (len > 1) {
double af = (angle * Math.PID) / 180.0;,
int nx = x + (int)(len * Math. cos(afr)),
int ny = y + (int)(len * Math.sin(afr)),
gc.setStroke(new BasicStroke(3));
gc.drawLine(x, y, nx, ny);
fractal(gc, nx, ny, angle + 20, len - 8);
fractal(gc, nx, ny, angle - 10, len - 8);

CIS 120




How do we draw a picture?

* Inthe OCaml GUI HW, we created widgets whose repaint
function used the graphics context to draw an image

let w_draw : widget =
{
repaint = (fun (gc:gctx) ->
fractal (with_color gc green) | O
200 450 270 80) ; g?
size = (fun O -> (200,200)); i
handle = (fun (O -> ()
¥

* In Swing, the preferred idiom is to extend the class JComponent ...

CIS 120



Fundamental class: JComponent

Analog of widget type from OCaml GUI project

— (Terminology: widget == JComponent)

Subclasses should override methods of JComponent
— paintComponent (like repaint, displays the component)
— getPreferredSize (like size, calculates the size of the component)

Events are handled by listeners (don't need to use
overriding...)

Richer functionality

— minimum/maximum size

— font

— foreground/background color
— borders

— what is visible

— many more...




Simple Drawing Component

public class DrawingCanvas extends JComponent {

// paint the drawing panel on the screen
public void paintComponent (Graphics gc) {
super.paintComponent(gc);

// set the pen color
gc.setColor(Color. GREEN);

// draw a fractal tree
fractal((Graphics2d)gc, 200, 450, 270, 80);

}

// give the size of the drawing panel
public Dimension getPreferredSize() {
return new Dimension(200,200);

¥

How do we put this component on the screen?

CIS 120




JFrame

* Represents a top-level window
— Displayed directly by OS (looks different on Mac, PC, etc.)

* Contains JComponents

 Can be moved, resized, iconified, closed

public void run() {
JFrame frame = new JFrame("Tree");

// set the content of the window to be our drawing
frame.getContentPane().add(new DrawingCanvas());

// make sure the application exits when the frame closes
frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE),

// resize the frame based on the size of the panel
frame.pack();

// show the frame
frame.setVisible(true);




CIS120



Start Simple: Lightswitch

Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

O @ On/Off Switch

On/Off

Key idea: use a ButtonListener to toggle the state of the
"lightbulb"




The Lightswitch GUI program in Swing.

CIS120



Display the Lightbulb

class LightBulb extends JComponent {

private boolean isOn = false;
} Remember the private

public void flip() { state of the lightbulb

1sOn = !1s0n;

¥

public void paintComponent(Graphics gc) { ]
tf (1s0n) o Draw the

gc.setColor(Color.YELLOW); Light bulb here
} else { - _ .
, ! . using the graphics

, gc.setColor(Color.BLACK); context
gc.fillRect(Q, 0, 100, 100); —

¥

public D1men51on.getPr'efer'redSue() { Set the size of the
return new Dimension(100,100); .
! window

CIS 120




Main Class

public class OnOff implements Runnable {
public void run() {

JFrame frame = new JFrame("On/0ff Switch");
JPanel panel = new JPanel(); ::}-—
frame.getContentPane().add(panel);
LightBulb bulb = new LightBulb();
panel .add(bulb); Create bulb and
JButton button = new JButton("On/0ff"); button
panel.add(button);
button.addActionListener(new ButtonListener(bulb));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}
public static void main(String[] args) { Start the (Swing)
SwingUtilities.invokeLater(new OnOff()); application
}
}

CIS 120

Open frame and
make a panel




Making the Button DO something

class ButtonListener implements ActionlListener {
private LightBulb bulb;
public ButtonListener (LightBulb b) {
bulb = b;

@0verride
public void actionPerformed(ActionEvent e) {

bulb.flip();
: . Note that “repaint” does not
. "\ . . .
bulb repat nt() ’ necessarily do any repainting

} now! It is simply a notification to
Swing that something needs
}- repainting.

CIS 120




