
Programming Languages
and Techniques

(CIS120)

Lecture 35

Swing III: Adapters, Mushroom of Doom, and
Paint Revisited

Chapter 30

CIS 120

Announcements
• HW8: TwitterBot

– Due: tomorrow at 11:59pm

• HW9: Game – Due Monday, December 9th at 11:59pm

• Wednesday, November 27th – Bonus Lecture
– Only 11:00 AM class
– Material is not needed for HW or Exams
– Should be fun!

CIS 120

CIS 120

Mushroom of Doom

How do we put Swing components together to
make a complete game?

CIS 120

GameCourt,
subclass of
JPanel
(court)

JPanel
(status_panel)

JPanel
(control_panel) JButton

(reset)

JLabel (status)

CIS 120

Game State
Circle

pos_x 170

pos_y 170

v_x 2
v_y 3

…

GameCourt

snitch

poison

square
playing true

…

Poison

pos_x 130

pos_y 130

v_x 0

v_y 0

…

Square

pos_x 0

pos_y 0

v_x 0

v_y 0

…

CIS 120

How can we share code
between the game
objects, but show them
differently?

CIS 120

Abstract Classes
• An abstract class provides an incomplete implementation:

– some methods are marked as abstract
– those methods must be overridden to create instances

public abstract class AbstractClass {
private int x = 0;
public int m() {

return frob(frob(x));
}
abstract int frob(int x);

}

class ConcreteClass extends AbstractClass {
@Override
int frob(int x) {

return x * 120;
}

}

Keyword "abstract" marks
methods without implementations.

A subclass overrides the abstract
method with an implementation.

CIS 120

CIS 120

True or False: It is possible to fill in the hole marked __??__ so that, when
run, the variable ac will contain a new object of type AbstractClass.

public abstract class AbstractClass {
private int x = 0;
public int m() {

return frob(frob(x));
}
abstract int frob(int x);

}

// somewhere in main:
Abstract Class ac = new AbstractClass __??__;

CIS 120

True or False: It is possible to fill in the hole marked __??__ so that, when
run, the variable ac will contain a new object of type AbstractClass.

public abstract class AbstractClass {
private int x = 0;
public int m() {

return frob(frob(x));
}
abstract int frob(int x);

}

// somewhere in main:
Abstract Class ac = new AbstractClass () {

@Override
int frob(int x) { return 0; }

};

Answer: True – use an anonymous inner class!

CIS 120

Updating the Game State: timer
void tick() {
if (playing) {
square.move();
snitch.move();
snitch.bounce(snitch.hitWall()); // bounce off walls...
snitch.bounce(snitch.hitObj(poison)); // ...and the mushroom

if (square.intersects(poison)) {
playing = false;
status.setText("You lose!");

} else if (square.intersects(snitch)) {
playing = false;
status.setText("You win!");

}
repaint();

}
}

CIS 120

How does the user
interact with the game?

1. Clicking Reset button restarts the game
2. Holding arrow key makes square move
3. Releasing key makes square stop

CIS 120

Updating the Game State: keyboard
setFocusable(true);
addKeyListener(new KeyAdapter() {
public void keyPressed(KeyEvent e) {
if (e.getKeyCode() == KeyEvent.VK_LEFT)

square.v_x = -SQUARE_VELOCITY;
else if (e.getKeyCode() == KeyEvent.VK_RIGHT)

square.v_x = SQUARE_VELOCITY;
else if (e.getKeyCode() == KeyEvent.VK_DOWN)

square.v_y = SQUARE_VELOCITY;
else if (e.getKeyCode() == KeyEvent.VK_UP)

square.v_y = -SQUARE_VELOCITY;
}

public void keyReleased(KeyEvent e) {
square.v_x = 0;
square.v_y = 0;

}
});

Make square's
velocity nonzero

when a key is pressed

Make square's
velocity zero when a

key is released

Allow the court to
handle key events

CIS 120

Adapters

MouseAdapter
KeyAdapter

CIS 120

Two interfaces for mouse listeners
interface MouseListener extends EventListener {

public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

}

interface MouseMotionListener extends EventListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);
}

CIS 120

Lots of boilerplate
• There are seven methods in the two interfaces.
• We only want to do something interesting for three of them.
• Need "trivial" implementations of the other four to implement

the interface…

• Solution: MouseAdapter class…

public void mouseMoved(MouseEvent e) { return; }
public void mouseClicked(MouseEvent e) { return; }
public void mouseEntered(MouseEvent e) { return; }
public void mouseExited(MouseEvent e) { return; }

CIS 120

Adapter classes:
• Swing provides a collection of abstract event adapter classes
• These adapter classes implement listener interfaces with

empty, do-nothing methods
• To implement a listener class, we extend an adapter class and

override just the methods we need

private class Mouse extends MouseAdapter {
public void mousePressed(MouseEvent e) { … }
public void mouseReleased(MouseEvent e) { … }
public void mouseDragged(MouseEvent e) { … }

}

CIS 120

Paint Revisited

Using Anonymous Inner Classes
Refactoring for OO Design

CIS 120

What layout would you use for
this app? What components
would you use?

CIS 120

Canvas
subclass of
JPanel
(canvas)

JPanel
(toolbar)

JRadioButton
(point, line)

JCheckbox
(thick)

JButton
(quit)

CIS 120

Mouse Interaction in Paint

Point
Mode

LineStart
Mode

LineEnd
Mode

Line
Button
press

Point
Button
press

Mouse Released
[add new line,
set preview to null]

Mouse Pressed
[store point,
set preview shape]

Mouse Released (in the canvas)
[add new point]

Mouse Dragged
[update preview]

CIS 120

Paint Revisited
(thoroughly discussed in Chap 31)

Using Anonymous Inner Classes
Refactoring for OO Design

(See PaintA.java … PaintE.java)

CIS 120

Model View Controller
Design Pattern

CIS 120

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Presented by

UsesSees

CIS 120

Example 1: Mushroom of Doom

CIS 120

Example: MOD Program Structure
• GameCourt, GameObj + subclass local state

– object location & velocity
– status of the game (playing, win, loss)
– how the objects interact with eachother (tick)

• Draw methods
– paintComponent in GameCourt
– draw methods in GameObj subclasses
– status label

• Game / GameCourt
– Reset button (updates model)
– Keyboard control (updates square velocity)

Model

View

Controller

CIS 120

Example: Paint Program Structure
• Main frame for application (class Paint)

– List of shapes to draw
– The current color
– The current line thickness

• Drawing panel (class Canvas, inner class of Paint)

• Control panel (class JPanel)
– Contains radio buttons for selecting shape to draw
– Line thickness checkbox, undo and quit buttons

• Connections between Preview shape (if any…)
– Preview Shape: View <-> Controller
– MouseAdapter: Controller <-> Model

Model

View

Controller

CIS 120

Example: CheckBox

Model

Selected?
Pressed?

Views Controllers

Class JToggleButton.ToggleButtonModel

true or false

boolean isSelected() Checks if the button is selected.
void setPressed(boolean b) Sets the pressed state of the button.
void setSelected(boolean b) Sets the selected state of the button.

setSelected

mouseListener

keyListener

CIS 120

Example: Chat Server

Model

owners: Map<Channel,
Users>

users: Map<Channel,

Set<Users>>
…

Views Controllers

ServerModel

createChannel
joinChannel
invite
kick
…

getChannels
getUsers
getOwner
…

Internal
Representation

CIS 120

Example: Web Pages

Model

Views

Controllers

document.
addEventListener()

Internal
Representation:

DOM
(Document

Object Model)

JavaScript
API

CIS 120

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Updates

UsesSees

CIS 120

MVC Benefits?
• Decouples important "model state" from how that state is

presented and manipulated
– Suggests where to insert interfaces in the design
– Makes the model testable independent of the GUI

• Multiple views
– e.g. from two different angles, or for multiple different users

• Multiple controllers
– e.g. mouse vs. keyboard interaction

CIS 120

MVC Variations
• Many variations on MVC pattern

• Hierarchical / Nested
– As in the Swing libraries, in which JComponents often have a "model"

and a "controller" part

• Coupling between Model / View or View / Controller
– e.g. in MOD the Model and the View are coupled because the model

carries most of the information about the view

CIS 120

Design Patterns
• Design Patterns

– Influential OO design book published in
1994 (so a bit dated)

– Identifies many common situations
and "patterns" for implementing
them in OO languages

• Some we have seen explicitly:
– e.g. Iterator pattern

• Some we've used but not explicitly described:
– e.g. The Broadcast class from the Chat HW uses the Factory pattern

• Some are workarounds for OO's lack of some features:
– e.g. The Visitor pattern is like OCaml's fold + pattern matching

