
Programming Languages
and Techniques

(CIS120)

Lecture 37

Swing IV: Paint Revisited
Chapter 31

CIS 120

Announcements

• HW9: Game – Due Monday, December 9th at 11:59pm

• Final Exam:
– Tuesday, December 17th 6:00-8:00PM
– Room assignments TBA
– Coverage: comprehensive, but emphasizing material since Midterm 2

• Dynamic dispatch, Exceptions, IO, OO concepts
– See example exams

• Makeup exam offered Weds. December 18th

– required by registrar for exam conflicts
– see Piazza (soon) for details

CIS 120

CIS 120

Paint Revisited

Using Anonymous Inner Classes
Refactoring for OO Design

CIS 120

What layout would you use for
this app? What components
would you use?

CIS 120

Canvas
subclass of
JPanel
(canvas)

JPanel
(toolbar)

JRadioButton
(point, line)

JCheckbox
(thick)

JButton
(quit)

CIS 120

Paint Revisited
(thoroughly discussed in Chap 31)

Using Anonymous Inner Classes
Refactoring for OO Design

(See PaintA.java … PaintE.java)

CIS 120

CIS 120

Mouse Interaction in Paint

Point
Mode

LineStart
Mode

LineEnd
Mode

Line
Button
press

Point
Button
press

Mouse Released
[add new line,
set preview to null]

Mouse Pressed
[store point,
set preview shape]

Mouse Released (in the canvas)
[add new point]

Mouse Dragged
[update preview]

CIS 120

Model View Controller
Design Pattern

CIS 120

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Presented by

UsesSees

CIS 120

Example 1: Mushroom of Doom

CIS 120

Example: MOD Program Structure
• GameCourt, GameObj + subclass local state

– object location & velocity
– status of the game (playing, win, loss)
– how the objects interact with eachother (tick)

• Draw methods
– paintComponent in GameCourt
– draw methods in GameObj subclasses
– status label

• Game / GameCourt
– Reset button (updates model)
– Keyboard control (updates square velocity)

Model

View

Controller

CIS 120

Example: Paint Program Structure
• Main frame for application (class Paint)

– List of shapes to draw
– The current color
– The current line thickness

• Drawing panel (class Canvas, inner class of Paint)

• Control panel (class JPanel)
– Contains radio buttons for selecting shape to draw
– Line thickness checkbox, undo and quit buttons

• Connections between Preview shape (if any…)
– Preview Shape: View <-> Controller
– MouseAdapter: Controller <-> Model

Model

View

Controller

CIS 120

Example: CheckBox

Model

Selected?
Pressed?

Views Controllers

Class JToggleButton.ToggleButtonModel

true or false

boolean isSelected() Checks if the button is selected.
void setPressed(boolean b) Sets the pressed state of the button.
void setSelected(boolean b) Sets the selected state of the button.

setSelected

mouseListener

keyListener

CIS 120

Example: Chat Server

Model

owners: Map<Channel,
Users>

users: Map<Channel,

Set<Users>>
…

Views Controllers

ServerModel

createChannel
joinChannel
invite
kick
…

getChannels
getUsers
getOwner
…

Internal
Representation

CIS 120

Example: Web Pages

Model

Views

Controllers

document.
addEventListener()

Internal
Representation:

DOM
(Document

Object Model)

JavaScript
API

CIS 120

MVC Pattern

Model

View(s)

User

Controller

Manipulates

Updates

UsesSees

CIS 120

MVC Benefits?
• Decouples important "model state" from how that state is

presented and manipulated
– Suggests where to insert interfaces in the design
– Makes the model testable independent of the GUI

• Multiple views
– e.g. from two different angles, or for multiple different users

• Multiple controllers
– e.g. mouse vs. keyboard interaction

CIS 120

MVC Variations
• Many variations on MVC pattern

• Hierarchical / Nested
– As in the Swing libraries, in which JComponents often have a "model"

and a "controller" part

• Coupling between Model / View or View / Controller
– e.g. in MOD the Model and the View are coupled because the model

carries most of the information about the view

CIS 120

Design Patterns
• Design Patterns

– Influential OO design book published in
1994 (so a bit dated)

– Identifies many common situations
and "patterns" for implementing
them in OO languages

• Some we have seen explicitly:
– e.g. Iterator pattern

• Some we've used but not explicitly described:
– e.g. The Broadcast class from the Chat HW uses the Factory pattern

• Some are workarounds for OO's lack of some features:
– e.g. The Visitor pattern is like OCaml's fold + pattern matching

