Programming Languages
and Techniques
(C1S120)

Lecture 39

Semester Recap

Announcements

e HW9: Game — Due tonight at 11:59pm

Final Exam:
e Tuesday, December 17t 6:00-8:00 PM

e 4 Locations:

— Meyerson Bl Last Names A- L
— Towne 100 Last Names M - Sh
— Skirkanich Auditorium Last Names Si— W
— Moore 216 Last Names X - Z

* Makeup exam offered Weds. December 18t
— required by registrar for exam conflicts
— time: noon - 2:00PM
— sign up form on course web page

Exam Preparation

 Comprehensive exam over course concepts:
— ldeas from OCaml material (no need to write OCaml)
— All Java material (emphasizing material since midterm 2)

— All course content except lecture 36 (Code is Data)

* Closed book, but:

— You may use one letter-sized, two-sided, handwritten
sheet of notes during the exam.

e Mock Exam and Review Session

— Wednesday, December 11t 1:00-4:30PM
— Towne 100

From Day 1

CIS 120 is a course in program design

TEUUI‘n following may 9|emenbsbeg|n need

library ava reference operations ynit

implements programming

Practical skills: “ensufuncl.'v ON oy

— ability to write larger (~1000 lines) - . :
Srograms Promise: A challenging

— increased independence but rewarding course.
("working without a recipe") ~igects OCAIT

— test-driven development, principled mose inberface I&SO::::
debugging m°dft'm,,?3.f"’ess'°" P ubllg end

case isbener work ce nexb variable

Conceptual foundations:
— common data structures and algorithms
— several different programming idioms

— focus on modularity and
compositionality

— derived from first principles throughout

It will be fun!

array
reaﬁg‘"e funcbions
empby sha ‘ point element
eavalue b test
eansprog ram
firsb Figure run OCa prlv.abe None
Ca"us'ng provi »desf"eba'lalso
match

03"3;[; Iengbh

Seb. Note ﬁld Ilke bree input

extent ml ht Gl
data

Empty head write
bool MUSE dlfferean o whether - mebhods

impl
geris LIS@ ORJECHT 0 tpes

m

Which assignment was the most
challenging?

OCaml finger exercises
DNA

Sets and Maps

Queues

GUI

Images

Chat

TwitterBot

Game

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

"n "
Which assignment was the most rewarding?

OCaml finger exercises
DNA

Sets and Maps
Queues

GUI

Images

Chat

TwitterBot

Game

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

13 concepts in 38 lectures

Concept: Design Recipe

Understand the problem

What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

HOW TO SOLVE IT

G. POLYA

"Solving problems", wrote Polya, "is a practical art, like
swimming, or skiing, or playing the piano: You can learn it
only by imitation and practice."

Interface vs. Implementation

 Concept: Type abstraction hides the actual BST:
implementation of a data structure, describes a
data structure by its interface (what it does vs.
how it is represented), supports reasoning with
invariants

 Examples: Set/Map interface (HW3), queues in

/ \X]d access concrete representation

Invariants are a crucial tool for

abstract view

reasoning about data structures:

1. Establish the invariants when . . @
entation without
you create the structure.
2. Preserve .the invariants when about the @
you modify the structure.

o

Testing

 Concept: Write tests before coding
— "test first”" methodology

* Examples: R A
. . . X e,
— Simple assertions for declarative X "
programs (or subprograms) /Q'P P
_ | : %
Longer (and more) tests for statefu TDD circle X3
programs / subprograms of life &

— Informal tests for GUIs

(can be automated through tools) ‘ '

 Why? Refackor

— Tests clarify the specification of the problem

— Helps you understand the invariants

— Thinking about tests informs the implementation

— Tests help with extending and refactoring code later
— Industry practice; useful for coordinating teams

Functional/Procedural Abstraction

Concept: Don't Repeat Yourself!
— generalize code so it can be reused
in multiple situations

Examples: Functions/methods,
generics, higher-order functions,
interfaces, subtyping, abstract classes

Pablo Picasso, Bull (plates | - XI) 1945

Why?
— Duplicated functionality = duplicated bugs
— Duplicated functionality = more bugs waiting to happen
— Good abstractions make code easier to read, modify, maintain

Persistent data structures

Concept: Store data in persistent, i ;
implement computation as tray” Recursion is the natural way of
computing a function f(¢) when ¢

structures . .
belongs to an inductive data type:

1. Determine the value of ffor
the base case(s).

2. Compute ffor larger cases by
combining the results of
recursively calling fon smaller
cases.

3. Same idea as mathematical

induction (a la CIS 160)

een various parts of the program, all interfaces

Examples: immutable lists anc
images, Strings, Streams in Jav

Why?

— Simple model of com

— Simple interface:
communicatio
are explicit)

— Recursion‘amenable to mathematical analysis (CIS 160/121)
— Plays well with parallelism

Concept: Tree Structured data

let rec length (l:int 1list) : int =
begin match 1 with
| [> 0

Lists (i.e. “unary” trees)

Simple binary trees | _::tl -> 1 + length(tl)

L : : ersi: A
Trees with invariants: e.g. binary
search trees

Widget trees: screen layout +
event routing

Swing components

Why? Trees are ubiquitous in

CS!

— file system organization
— languages, compilers
— domain name hierarchy www.google.com

label | .handle e

http://www.google.com

First-class computation

* Concept: code is a form of data that can be defined by
functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

 Examples: map, filter, fold (HW4), pixel transformers (HW®6),
event listeners (HWS5, 7, 9)

cell.addMouselistener(e -> {
selectCell(cell);
});

* Why?
— Powerful tool for abstraction: can factor out design patterns that differ
only in certain computations

Types, Generics, and Subtyping

Concept: Static type systems prevent many errors. Every
expression has a static type, and OCaml/Java use the types to
rule out buggy programs. Generics and subtyping make types
more flexible and allow for better code reuse.

let rec contains (x:’a) (l:’a list) : bool =
begin match 1 with
| [] -> false
| h::tl -> x = a || (contains x tl)
end

Why?
— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants
about the program are maintained

Mutable data

Concept: Some data structures are ephemeral: computations
mutate them over time

Examples: queues, deques (HW4), GUI state (HWS5, 9),
arrays (HW 6), dictionaries (HW8)

Why?

— Common in OO0 programming, which simulates the transformations that
objects undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

-
-

head || * | v 1 / , v 2

tail || o next o~ A next

5 . |
—— f | and

A queue with two elements

Sequences, Sets, Maps

Concept: Specific collection types: sequences, sets, and finite
maps

Examples: HW3, Java Collections, HW 7, 8
Why?
— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language
you are programming in

— Need to be able to choose the data structure with the right semantics

) A mm) B =) [
filter map fold

A (transform) - (reduce)

Lists, Trees, BSTs, Queues, and Arrays

 Concept: There are implementation trade-offs for abstract types
 Examples:

— Binary Search Trees vs. Lists vs. Hashing for sets and maps
— Linked lists vs. Arrays for sequential data

e Why?
— Abstract types have multiple implementations

— Different implementations have different trade-offs. Need to understand
these trade-offs to use them well.

— For example: BSTs use their invariants to speed up lookup operations

compared to linked lists.
interface Set {boolean isEmpty(); ...}

head E/\C\ v 1 v 2
| tail [:] next ;}r next m
_"/

A queue with two elements

Abstract Stack Machine

« Concept: The Abstract Stack Machine is a detailed model of -
how programs execute in OCaml/Java

Do the Function call Save Workspace; push 11,12 Lookup I1 Lookup 11

Match Expression Nil case Doesn’t Match Cors case Does Match Simplify the Branch: push h, t

Lookup " Looxup " Lookup ‘sppend” Lookup ‘sppend”

Abstract Stack Machine

Concept: The Abstract Stack Machine is a detailed model of
how programs execute in OCaml/Java

Example: Many, throughout the semester!

Why?

To know what your program does without running it

To understand tricky features of Java/OCaml language (aliasing, first-
class functions, exceptions, dynamic dispatch)

To help understand the programming models of other languages:
Javascript, Python, C++, CH, ...

To help predict performance and space usage

Event-Driven programming

Concept: Structure a program by associating "handlers" that
react to events. Handlers typically interact with the rest of the
program by modifying shared state.

Examples: GUI programming in OCaml and Java

00 X OCaml graphics

Why? —

— Practice with reasoning about -
shared state \\/

— Practice with first-class functions | |

— Basis for programming with Y- |-
SWII’]g :“;’

@Pmntl IO Lme] IO Elllpsal IO Textl Ig Thick lmes]

— Common in GUI applications ——=0 GELLLEET

Text buffer:hey, kiss]
-

Why some other language than Java?

* Level playing field for students with varying backgrounds
coming into the same class

 Two points of comparison — allows us to emphasize
language-independent concepts

* Learn concepts that generalize across diverse languages.

...but why specifically OCaml?

“Y20Caml

Rich, orthogonal vocabulary

In Java: int, A[], Object, Interfaces
In OCaml:

— primitives

— arrays

— objects

— datatypes (including lists, trees, and options)
— records

— refs

— first-class functions

— abstract types

All of the above can be implemented in

Java, but untangling various use cases of
objects is subtle

Concepts like generics can be studied in
isolation in OCaml, with fewer intricate
interactions with the rest of the language

Functional Programming

In Java, every reference is mutable and
optional by default

In OCaml, persistent data structures are the
default. Furthermore, the type system keeps
track of what is and is not mutable, and what
is and is not optional

Advantages of immutable/persistent data
structures

— Don't have to keep track of aliasing. Interface to the
data structure is simpler

— Often easier to think in terms of "transforming" data
structures than "modifying" data structures

— Simpler implementation
(compare lists and trees to queues and deques)

— Simple but powerful evaluation model
(substitution + recursion).

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
IT5 OWN REWARD.

P&

ONEDOES NOT SIMPL

MOVATE A DATASTRUCTURE

Object Oriented Programming

» A different way of decomposing / structuring
programs

* Basic principles:
— Encapsulation of local, mutable state

— Inheritance to share code
— Dynamic dispatch to select which code gets run

Java

* but why specifically Java?

Important Ecosystem i

KEEP

. . CALM
Canonical example of OO language design AND
. _ LEARN JAVA
Widely used: Desktop / Server / Android / etc.
Industrial strength tools = Spe‘:”“r%“a”ko _
Python 100.0
- ECIipse u Java ® 0 Q 96.3 |
— JUnit testing framework H- o © o AN
) [« I 0o e es
— Profilers, debuggers, ... o — .
Libraries: e - -
TIOBE Programming C:en:onn:unlw Index
— Collections /1/0 = e —
In-demand
job skill :
’ ~ _ oM N
e - it i O,

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

we Java == C Python C++ == C# == Visual Basic .NET JavaScript == PHP == SQL Swift

What Next?

Classes:

CIS 121, 262, 320 — data structures, performance, computational
complexity

CIS 19x — programming languages

* Python, Haskell, Ruby on Rails, iPhone programming, Android, Javascript,
Rust

CIS 240 — lower-level: hardware, gates, assembly, C programming
CIS 341 — compilers (projects in OCaml)

CIS 371, 380 — hardware and OS’s

CIS 552 — advanced functional programming in Haskell

Penn
Engineering

And many more!

The Craft of Programming

* The Pragmatic Programmer: > he .
raoimatic
Proerammer

From Journeyman to Master
by Andrew Hunt and David Thomas

— Not about a particular programming language, '
it covers style, effective use of tools, and ¢)

good practices for developing programs.

\ndrew Hunt
David Thomas

Joshua Bloch ...
Java 9 .
* Effective Java

Effective Java

Third Edition

by Joshua Bloch

— Technical advice and wisdom about using Java for
building software. The views we have espoused in
this course share much of the same design
philosophy.

Functional Programming

’ Real World Ocaml O'REILLY'
by Yaron Minsky, Anil Madhavpeddy, Y

and Jason Hickey {
— Using OCaml in practice: learn how to leverage “‘ |
its rich types, module system, libraries, and Real World

tools to build reliable, efficient software. OCaml

FUNCTIONAL PROGRAMMING FOR THE MASSES

— https://realworldocaml.org/

* Explore related Languages:

DI\ Haskel ’Scala PAsoN

KKotIin O Clojure <> F# Swift

https://realworldocaml.org/

Conferences / Videos / Blogs

curry-on.org

cufp.org Commercial Users of Functional
Programming

— See e.g. Manuel Chakravarty's talk
"A Type is Worth a Thousand Tests"

Yaron Minsky's Jane Street Tech Blog J
— Ocaml in practice <O> S?Peeet

PENN

%

PHASE — Philly Area Scala Enthusiasts

Join us! Penn's PL Club plclub.org

Ways to get Involved

PENN

7

Become a TA!

< [wics)

Undergraduate
Research

Parting Thoughts

* Improve CIS 120:
— End-of-term survey will be sent soon
— Penn Course evaluations also provide useful feedback
— We take them seriously: please complete them!

r. | Image Processing " (= O

RotateCW

RotateCCW

Thanks!

let rec length (1:int 1list) : int =
begin match 1 with
| [> 0
| _::tl -> 1 + length(tl)

X OCaml graphics

a OElliEse O Text| [Thick lines|

‘ WY RY 0o = Current Color

end
AAAA
ACAT AAGA
#foo I I
GCAT TCGT TAGA GAGA
800 Join
What channel do you want to join? What channel do you want to join?
f;‘ A #bar 5 2 #baz
Cancel OK
800 P |
Load new image Save image Quit o kide |
Alice

4 ‘ RotateCW
Join Leave
i RotateCCW

S8
S

‘ Color scale

‘ Contrast

‘ Reduce palette = =
‘ alpha-Blend

‘ Vignette

‘ Blur

Flood .

Custom

—)

