CS 514: Advanced Algorithms II — Sublinear Algorithms Rutgers: Fall 2021

Lecture 2
September 14, 2021
Instructor: Sepehr Assadi Scribe: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Sublinear Time Algorithms for Graphs 1
1.1 Query Model for Graph Problems 1
2 Estimating Number of Connected Components 2
2.1 Proof of Correctness e 4
2.2 Runtime Analysis 5
2.3 Concluding Remarks e 5
3 Estimating Average Degree 6
3.1 Warm Up: Almost-Regular Graphs 6
3.2 General Case e 7
3.3 Amplifying the Probability of Success o 10

1 Sublinear Time Algorithms for Graphs

We are going to study sublinear time algorithms in this and the next couple of lectures. In this lecture, we
will focus on sublinear time graph algorithms. Before we start, a quick notation is in order.

Notation. For any vertex G = (V, E), we use n = |V| and m = |E| to denote the number of vertices and
edges, respectively. For any vertex v € V, N(v) denote the set of neighbors of v in G and deg(v) = |N(v)] is
the degree of v. We also recall the following basic equation:) _, deg(v) = 2m (the ‘handshaking lemma’).

1.1 Query Model for Graph Problems

When designing sublinear time algorithms, specifying the exact data model, or rather the query model, is
crucial as the algorithm cannot even read the entire input once'. A query model then specifies what type
of queries can be made to the input or in other words, how one should expect to receive the input to the
algorithms (often times, we assume a query takes O(1) time).

In the context of graph problems, we typically work with one of the following models: adjacency list model,
adjacency matriz model, or the general query model. In each model, we assume that the graph G = (V, E)

1In the classical setting also specifying the input access is important; however, one can typically change different types of
access in time linear in the input size and so this does not form a barrier for classical algorithms.

has known vertices V.= {1,...,n} (so ID(v) € {1,...,n} for any v € V) but the edges are unknown. Each
model then specifies how one can access the edges of the graph.

Adjacency list query model: The following queries can be answered in O(1) time in this model:

e Degree queries: Given a vertex v € V, output deg(v), namely, the degree of v.

e Neighbor queries: Given a vertex v € V and ¢ € [n], output the i-th neighbor of v or L if i > deg(v).

By storing the graph in the adjacency list format, we can implement the above query model for algorithms.

Adjacency matrix query model: The following queries can be answered in O(1) time in this model:
e Pair queries: Given two vertices u,v € V, output whether (u,v) is an edge in G or not.

By storing the graph in the adjacency matrix format, we can implement the above query model for algorithms.

General query model for graphs: This model is simply a combination of both models above that allows
all the three queries mentioned above. This query model can be implemented by storing both the adjacency
list and the adjacency matrix of the graph separately.

Remark. The three models above are the most standard models for graph problems. However, some-
times one can consider extensions of these models, for instance, by allowing an extra edge-sample query
that returns an edge uniformly at random from the graph.

Additionally, the query models we discussed are considered local queries as they answer “local” infor-
mation about the graph (typically functions of local neighborhood of a single vertex). Researchers have
also studied global query models that answer much more global information: for instance, given a set of
vertices, return the number of edges with both endpoints in the set. We will talk about global queries
later in the course and for now only mention that power of local and global queries are vastly different;
there are various problems that can be solved much faster when one has access to these global queries.

2 Estimating Number of Connected Components

We start with one of the most classical problems in the area of sublinear time graph algorithms, namely,
estimating the number of connected components, studied first by Chazelle, Rubinfeld, and Trevisan [1], in
the earliest stages of the field of sublinear time algorithms. The problem is as follows:

Problem 1 (Estimating number of connected components). Given a graph G = (V, E) in the adja-
cency list query model, approximation parameter ¢ € (0,1), and confidence parameter ¢ € (0,1), output an
approximate number of connected components C' such that:

Pr(|5—C|§5n)21—57

where C' is the actual number of connected components in G.

Remark. The reason why we settled for this additive approximation (with respect to n) as opposed to
multiplicative approximation (having |6 — C| <e-0) or just aiming for the exact answer is as follows:
distinguishing whether a graph is connected or has two connected components, thus a better-than-2-
approximation, requires Q(n?) time (we will prove this result later in the course).

Before we get to describe the algorithm, we need a definition.

Definition 1. For any vertex v € V, we define s, as the size of the connected component of v in G,
i.e., the number of vertices (including v) that are in the same connected component as v.

The following claim reduces the task of estimating the number of connected components to computing a
simple function of s,’s for all v € V.

Claim 2. C =} .y s..

Proof. Let Dy, ..., D¢ denote the connected components of G. Note that V = Dy U...U D¢ and D;’s are
disjoint. This way, vertices of each connected component D; contribute 1/|D;| to the sum, which adds up
to 1 in the component. Hence, the total sum is C. Formally,
c c c
1 1 1 1
O DD DEED DD DR DI DI
vev Y i=1veD; ~" i=lveD; " " i=1 i i=1

O

Our general strategy is now to calculate the sum in Claim 2 to estimate C by sampling a small number
of vertices v and computing s,, which can be done by doing any form of graph search, say, DFS or BFS,
starting from v and counting number of visited vertices. This strategy at this point however is problematic
because when s, is very large, computing all vertices connected to v can take a long time. An important
observation is that having a “large” s, makes the contribution of v to the summation above, i.e., i, “small”

and thus almost negligible. We formalize this in the following.

Claim 3. Define s;, := min(s,,?/e) for allv € V' and C' := 3" _\, V/s,. Then, |C —C'| < (¢/2) - n.

v

Proof. First, observe that for each v € V:

0<

IN
l\J.I L)

1
Sy

VA
o -

This holds because s, < s,, and s, > 0, and whenever s, # s,, we have that s, = 2/e, and s, > 0. By
summing the inequality over all vertices:

1 1 5
C'-C= < -
Z A "
veV
1 1
C'-C= — >
> 520
vevV ¥
concluding the proof. O

Claim 3 ensures that if instead of computing s,, we compute s/, we can still get a good estimate of C.
However, computing s is easier now since we only need to do a graph search starting from the vertex v and
terminate the search whenever more than 2/= vertices are found.

Remark. Claim 3 gives a straightforward deterministic algorithm for this problem — simply compute
s! for every vertex which takes O(1/2) time per vertex (see Section 2.2 for details). This gives an
O(n/e?) time deterministic algorithm which is sublinear in the size of input (which can be Q(n?)) but
not sublinear in the number of vertices. In the rest of this part, we are going to show that using
randomization, one can get a much faster algorithm for this problem.

We are now ready to present the algorithm.

Algorithm: An algorithm for Problem 1 on any given graph G = (V, E).
1. Let k :=2/e%-1In (2/9).
2. For i =1 to k do the following:

e Sample a vertex v; uniformly at random from V' (with replacement).
e For the vertex v;, compute X; —L by doing a graph search, say, DFS or BFS, from v; and

truncating the search once 2/5 vertlces are visited.

3. Output C = n/k - Zle X;.

In order to analyze this algorithm, we use the following additive variant of Chernoff bound?.

Proposition 4 (Additive Chernoff Bound). Let Y1,Y5,..., Yy be k independent random variables with
values in [0,1] and Y =3, Y;. Then, for any b > 1,

Pr[[Y —E[Y]| > b < 2-exp <—¥) .

We now present the proof of correctness and runtime analysis of this algorithm.
2.1 Proof of Correctness

As in the previous lecture, we first compute the expected value of the output C , and show that it is close to
the desired answer and then bound the probability of deviation of this random variable from its expectation.

Claim 5. E {5} —C.

Proof. By linearity of expectation, we have,

k
E [5] - % S EX] = % k-E[X4] (as X1,..., Xy are identically distributed)

We can compute E [X;] as follows:

E[X;] = Z Pr (v is chosen as v1) - E[X; | v is chosen as v1]
veV

SIH

1
DIRLEY
V’U

where the second to last equality is because when we choose v in the algorithm as vy, we set X; = /s, and
the last equality is by the definition in Claim 3. The claim now follows from the above two equations. O

By Claim 5 (and Claim 3), the output is within the desired range in expectation. We now use Chernoff
bound to bound the probability that it also deviates from its expectation by much.

Claim 6. Pr (|5 — ' < (5/2) n) >1-94.

2Tt is worth mentioning that the bounds one get from multiplicative Chernoff bound is always at least as good as the additive
version — we thus only use additive Chernoff for simplifying the calculations when possible.

Proof. Define X := Zle X;. Note that this way C = n/k - X and

by Claim 5. Moreover,

\é—cwzg.w:wg-x—ﬁ-mxnz k.

’ ‘n <= | X -E[X]|>

oM
IR

Finally, X is a sum of k independent random variables X;’s which are in [0,1]. Hence, we can apply the
additive Chernoff bound in Proposition 4 with parameter b = ¢/2 - k and obtain that,

Pr<|XfIE[X]|2%~k> gz.exp<Li)2’k2> 2.exp(§.k)

202
=2-exp (—% ' '111(2/5)) <2-4/2=0. (by the choice of k)
This proves the desired claim. O

By Claim 3 we know that €’ is close to C' (deterministically) and by Claim 6, we get that C is close to C”
with probability 1 — §. We can combine these two together to conclude the correctness of the algorithm.

Lemma 7. The output C of the algorithm satisfies Pr <|5 —C|<e- n) >1-4.

Proof. By Claim 6, with probability at least 1 — §, we have, |C~Y — C’| < (¢/2) - n. Moreover, by Claim 3, we
have |C’ — C| < (¢/2) - n (deterministically). Hence, by triangle inequality, with probability at least 1 — 4,
5

|é—o|g|5—c’|+|o'—0|gg-n+2

n=c«c-n,

finalizing the proof of correctness of the algorithm. O

2.2 Runtime Analysis

Given v;, computing s/, in the algorithm takes O(1/?) time because we are going to visit only 2/= vertices
from v; and thus DFS or BFS will time proportional to the number of these vertices plus all edges between
them which is at most O(1/<?). As such, the total runtime of the algorithm is:

1 1 1 1
kE-O(=) = = ‘In(2/9)-O(=) = 0(5—4 -1n (1/9)).

g2 g2

Remark. Notice that this algorithm runs in constant time (independent of the size of the input graph)
whenever € and 0 are fixed constants.

2.3 Concluding Remarks

We saw an algorithm for estimating the number of connected components to within an € -n additive approx-
imation in time O(Zr -In (1/4)). This result was first proved by Chazelle, Rubinfeld, and Trevisan in [1] who
used it as a subroutine to estimate the weight of a minimum spanning tree in a graph in sublinear time.

Open question? The algorithm we discussed does not seem to obtain optimal bounds as a function of €, 4. It
would be interesting to investigate if these bounds can be improved further and/or prove a matching lower
bound for this problem?.

3Important Note: This problem may have already been solved and a literature search is the first step.

