
CIS 1210—Data Structures and Algorithms—Fall 2024

Asymptotic Notation—Tuesday, September 3 / Wednesday, September 4

Readings

• Lecture Notes Chapter 5: Running Time and Growth Functions

Review: Runtime Analysis

When analyzing algorithms, we can analyze the best case, average case, and worst case running times:

Best Case Analysis: This is when we analyze the runtime of the algorithm on the set of inputs in
which it performs the fastest. This isn’t always useful because algorithms can be modified to make
the best case performance trivial. For example, we may hardcode the solution/what to return for a
specific input. In these situations, the best case performance is effectively meaningless. Note: Best case
analysis is different from the best conceivable runtime, which is the fastest that any algorithm could
conceivably solve a given problem.

Worst Case Analysis: This is when we analyze the runtime of the algorithm on the set of inputs
with which it performs the slowest. This is useful because the worst case running time of an algorithm
gives an upper bound on the running time for any input. In other words, the worst case running time
provides a guarantee that the algorithm can never take any longer than this. Thus, unless otherwise
specified, in CIS 1210, we will ask you to perform worst case analysis since it is the cleanest
and usually most useful method of analysis.

Average Case Analysis: This is when we analyze the runtime of the algorithm on the “average”
input. This is less common than worst case analysis, as what constitutes an “average” input is usually
not given to us and finding the “average” input requires taking an expectation over the probability
distribution of all possible inputs to the algorithm.

As the input size grows, we use asymptotic notations to describe the asymptotic behavior and efficiency
of a function. The definitions in asymptotic notations are as follows:

Big-O: If f(n) ∈ O(g(n)), there exist positive constants c and n0 such that for all n ≥ n0,

0 ≤ f(n) ≤ c · g(n)

g(n) is an asymptotic upper bound for f(n).

Big-Ω: If f(n) ∈ Ω(g(n)), there exist positive constants c and n0 such that for all n ≥ n0,

f(n) ≥ c · g(n) ≥ 0

g(n) is an asymptotic lower bound for f(n).

Big-Θ: If f(n) ∈ Θ(g(n)), there exist positive constants c1, c2 and n0 such that for all n ≥ n0,

0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n)

In other words, f(n) ∈ Θ(g(n)) if and only if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
g(n) is an asymptotic tight bound for f(n).

1

https://www.seas.upenn.edu/~cis1210/current/lectures/notes.pdf#page=39


Asymptotic notations can also be defined in terms of limits:

Big-O: f(n) ∈ O(g(n)) if lim
n→∞

f(n)/g(n) = 0 or a constant.

Big-Ω: f(n) ∈ Ω(g(n)) if lim
n→∞

f(n)/g(n) = ∞ or a constant.

Big-Θ: f(n) ∈ Θ(g(n)) if lim
n→∞

f(n)/g(n) = a nonzero constant.

Problems

Problem 1: True or False

1. A Big-O, Big-Θ, and Big-Ω bound for an algorithm correspond to its worst-case, average-case, and
best-case runtime, respectively.

2. For any two functions, f(n) and g(n), either f(n) ∈ O(g(n)) or g(n) ∈ O(f(n)).

3. f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n)).

Problem 2

Prove that 3n2 + 100n = Θ(5n2).

Problem 3

Prove using induction that n lg n = Ω(n).

Problem 4

Prove that lg(n!) = Θ(n lg n).

2


	Readings
	Review: Runtime Analysis
	Problems
	Problem 1: True or False
	Problem 2
	Problem 3
	Problem 4


