
Solution Set

CIS 1210—Data Structures and Algorithms—Fall 2023

Stacks & Queues—Tuesday, September 26 / Wednesday, September 27

Readings

• Lecture Notes Chapter 13: Stacks & Queues

Review: Stacks and Queues

An abstract data type (ADT) is an abstraction of a data structure; it specifies the type of data stored
and the operations that can be performed, similar to a Java interface. Recall the Stack and Queue ADTs:

Stack Queue

• LIFO (Last-In-First-Out): the most
recent element added to the stack will
be removed first

• Supported operations:

– push: amortized O(1)

– pop: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

• FIFO (First-In-First-Out): the old-
est/least recent element added to the
queue will be removed first

• Supported operations:

– enqueue: amortized O(1)

– dequeue: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

Implementation Details

In this course, we implement stacks and queues using (dynamically resizing) arrays. In other words, we adjust
the size of the array so that it is large enough to store all of its current elements but not large enough that
it wastes space. The rules we will use for increasing or decreasing the size of a stack or queue’s underlying
array are as follows:

1. If the array of size n is full, create a new array of size 2n and copy all elements into the new array.

2. If the array of size n has less than n
4 elements in it, create a new array of size n

2 and copy all elements
into the new array.

Note that we resize “down” when the array has n
4 elements in it (instead of when it has n

2 elements) to
prevent “thrashing.” If we resized “down” when the array has n

2 elements, consider the case where we push
elements onto a stack until it resized “up.” If we were to pop a single element, then we would have to
resize “down,” but then if we were to push another element, we would have to resize “up” again, so in the
worst-case, every push/pop operation would require copying elements and creating new arrays, increasing
our runtimes.

Amortized Analysis

When calculating the runtimes of operations for stacks and queues, we perform amortized analysis. In amor-
tized analysis, the amortized runtime of a single operation is equal to the time needed to perform a series
of operations divided by the number of operations performed. For example, let T (n) be the amount of time
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needed to perform n push operations. Then, the amortized runtime of a single push operation is equal to
T (n)
n . Observe that we often perform amortized analysis in situations where the occasional operation takes

much longer than the rest of the operations. Considering a stack, in the worst-case, a push operation takes
O(n) time because of array resizing, but otherwise most of the push operations take O(1) time since we’re
just setting a value at an index of the array.

Note: Amortized analysis is not the same as average-case analysis, since it does not depend at all on the
probability distribution of inputs. Instead, the total running time of a series of operations is bounded by the
total runtime of the amortized operations.

Problems

Problem 1

You are given two stacks S1 and S2 of size n. Implement a queue using S1, S2, and a stack’s push, pop,
and/or peek methods. What are the (amortized) running times of your new enqueue and dequeue methods?

Solution

enqueue(x):

1. push x into S1.

dequeue:

1. If S2 is empty, pop all elements from S1 and push them into S2. If S2 is still empty, return Nil.

2. Otherwise, pop an element from S2 and return it.

Proof of Correctness: We want to show that our enqueue and dequeue methods maintain a queue’s FIFO
invariant. Since we enqueue an element by push’ing it onto S1, to properly dequeue, we need to access the
elements in S1 in “reverse” order, from the bottom to the top of the stack. We maintain and ensure this by
pop’ing elements from S1 and push’ing them onto S2 when necessary, so we can just pop from S2 to dequeue.
Since a stack is LIFO, any elements that are pushed into S2 must be in reverse order relative to how they were
pushed into S1, so popping off S2 guarantees that the correct element in the queue is retrieved at any time. In
the edge case where both S1 and S2 are empty, there are no elements in the queue, so we correctly return Nil.

Runtime Analysis: The amortized running time of enqueue is O(1), same as a regular stack push opera-
tion. For the amortized running time of dequeue, observe that for each element we dequeue, we push exactly
once (into S2) and pop exactly twice (once from S1 and once from S2). Hence, since we have n elements, we
still have an O(n) running time over all dequeue operations (as push and pop are amortized O(1)). When
we average this over n operations, we see that dequeue still runs in O(1) amortized time. At a high-level,
when we dequeue, note that we only move elements to S2 if S2 is empty, and when we move elements onto
S2, we move many elements at once. So, the dequeue operation when S2 is empty pays the “cost,” making
the following dequeue operations faster, since in the future we can pop from the now non-empty S2.

Space Analysis: Beyond the given stacks, we use O(1) additional space to maintain a variable to hold
values between the pop and push operation in dequeue.

Problem 2

You are given a full stack S1 with distinct elements and an empty stack S2, each of size n. Design an
algorithm to sort the n elements in increasing order from the top in S2, using only O(1) additional space
beyond S1 and S2. What is the running time of your sorting algorithm?

Example:
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Hint: Start with a smaller example:

3
2
1

→
1
2
3

Solution

We use the two given stacks, S1 and S2, and two extra variables max and size in our algorithm.

Algorithm: Initialize max to −∞ and size to 0. Repeat these steps until size = n:

1. pop all elements from S1 and push them onto S2. While pop’ing, keep track of the maximum element
we have seen so far in max.

2. pop elements from S2 (until only size elements remain in S2) and push all of these elements, except
the maximum element stored in max, back into S1.

3. push the maximum element (stored in max) into S2.

4. Increment size by 1, so we can keep track of the number of sorted elements in S2 and not pop them.

Proof of Correctness: The correctness of our algorithm follows from a stack’s LIFO invariant. S1 starts
with all (unsorted) elements, and we maintain this invariant that S1 only contains elements that have not
yet been sorted because in Step 2, we pop from S2 into S1 so only the bottom size elements (the number
of elements sorted) remain in S2. While we pop from S1, we correctly update max to be the max element
that is currently unsorted and then “sort” this element by push’ing max into S2 in Step 3. Our algorithm
terminates when size = n (when S1 is empty), so all elements have been sorted. Because a stack is LIFO
and we “sort” an element each iteration by push’ing the maximum unsorted element found into S2, when
our algorithm terminates, S2 contains all elements sorted in non-decreasing order.

Runtime Analysis: Each iteration of our “loop” (Steps 1 to 4) sorts exactly 1 element. n push/pop

operations take O(n) time, and for each of the n elements we sort, we push and pop at most n elements.
Therefore, our sorting algorithm runs in O(n2) time.

Space Analysis: Beyond the given stacks, we use two variables max and size for O(1) additional space.
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