’ CIS 1210—Data Structures and Algorithms—Spring 2025 ‘

Tries—Tuesday, April 15 / Wednesday, April 16

Readings

e |Lecture Notes Chapter 24: Tries

Review

A trie is a tree-based data structure that stores strings to support information retrieval. Tries are primarily
useful when we need to repeatedly query a fixed text because it allows us to pre-process this text such that
each subsequent query is fast, offsetting this initial cost of building the trie.

Standard Trie: In a standard trie, each root-to-leaf path corresponds to some string inserted into the
trie. If the total length of all strings inserted into the trie is n, then a standard trie takes O(n) time to
build (using an incremental algorithm) and uses O(n) space as well.

Patricia/Compressed Trie: A compressed trie is a trie where we guarantee that every internal node
has at least two children by compressing branches/chains of single-child nodes into a supernode. If the
total length of all strings is n and we have s strings, then a compressed trie takes O(n) time to build
but only uses O(s) space, since the tree is now at least as full as a full binary tree (which has O(s)
nodes if it has s leaves).

Suffix Trie: A suffix trie is a trie where the strings are all the suffixes of a string .S. Using an incremental
algorithm, we can build a suffix trie in O(]S|?) time, but we can actually also do it in O(|S|) time using
Ukkonen’s Algorithm; however, the details behind how this works are outside the scope of CIS 121. A
compressed suffix trie uses O(|S]) space.

Problems

Problem 1

Given a set of N strings, design an efficient algorithm to find the longest common prefix between any two
strings. What is the running time of your algorithm?

Problem 2

Given some string .S, design an efficient algorithm to find the longest repeated substring. What is the running
time of your algorithm?

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=149

	Readings
	Review
	Problems
	Problem 1
	Problem 2

