
Programming Fundamentals
(CIS 1200) Review

CIS 1210 Spring 2025

Agenda
● Principles of Object-Oriented Programming

○ Classes vs Objects and Inheritance
○ Abstraction
○ Encapsulation
○ Polymorphism

● Java Fundamentals
○ Primitives and Pointers
○ Static vs Dynamic Typing
○ Parameterization

● Recursion
● Common Issues

Classes vs Objects
● Classes are templates , objects are instances of classes.
● Classes can belong to superclasses , from which they inherit characteristics.

TAClass
Fields

Methods

Name
Major

grade()
changeMajor()

TiffObject

Name: Tiff
Major: M&T

RobinObject

Name: Robin
Major: CIS

Abstraction
● Hides implementation details and only shows functionality

○ Simplifies code logic
○ Reduces programming complexity

Vehicle

accelerate()
turn()

abstract

Car

accelerate(): put foot to gas
turn(): turn steering wheel

Bicycle

accelerate(): rapidly push pedals
turn(): move around bike handles

Encapsulation
● Making methods and variables public or private will change its scope of access

○ public methods/variables can be utilized by other classes
■ Getters/setters allows control over how fields are changed

○ private methods/variables will be used solely by its root class
■ Protects fields from being unauthorized altered by client classes.

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

package private
(no modifier)

Yes Yes No No

private Yes No No No

Least
Restrictive

Most
Restrictive

Polymorphism
● One method name can invoke different method behaviors

Overloading
Multiple methods with same name but different signatures

powerOf(int x, int y) powerOf(double x, double y)

Overriding
Subclass’s method with same name as superclass’s method overrides it

vehicle.accelerate() bicycle.accelerate()

Pointers and Primitives

Node curr = new Node(1);
setValToTwo(curr);
print(curr.value);

int curr = 1;
setValToTwo(curr);
print(curr);

vs

console: ‘2’ console: ‘1’

Static vs Dynamic Typing
● Statically Typed : type checked during compile-time (pre-execution)

○ Java’s compiler will complain if an object’s static type or its superclasses are an
expected type.

○ Pro: easier to catch bugs, limits runtime errors
○ Con: pain to program in
○ C, Java, Haskell

● Dynamically Typed : type checked during run-time (during execution)
○ Will throw a runtime error if it detects an object with an unexpected type or an

undefined method name
○ Pro: sweet to program in
○ Con: difficult to debug, prone to runtime errors
○ Python, JavaScript, PHP

Static Variables and Methods
● Static variables: shared between all instances of an object

○ If one instance updates a static field, all instances feel the effect
○ Modifying static global variables is generally bad

■ Complicates logic
■ Introduces concurrency issues
■ Common cause of inexplicably failing test cases -- don’t forget to reset!

● Static methods are similar
○ Can be called without an instance of the class

■ Math.random(), Collections.sort()
○ Can not reference/modify non-static fields or call non-static methods

Parameterization
● Can parameterize classes to make more generic
● Ex: List<E>

○ Rather than creating separate classes for IntList, StringList, DoubleList, etc.
● E stands for an arbitrary type

○ Good because it’s generic
○ Bad because it’s you can’t assume anything about it (except that it is an

Object)
○ A specific type will be provided upon instantiation

■ e.g. List<Integer> list = new LinkedList<Integer>();
○ In this case, everywhere you see “E”, replace with “Integer” to understand its

behavior

Recursion factorial(n):
 return n * factorial(n - 1)

factorial(4):
 return 4 * factorial(3)

factorial(3):
 return 3 * factorial(2)

factorial(2):
 return 2 * factorial(1)

factorial(1):
 return 1

Recursion factorial(n):
 return n * factorial(n - 1)

factorial(4):
 return 4 * factorial(3)

factorial(3):
 return 3 * factorial(2)

factorial(2):
 return 2 * factorial(1)

factorial(1):
 return 1

Inductive
Step Base Case

Inductive
Hypothesis

recursion = induction

Recursion factorial(n):
 return n * factorial(n - 1)

factorial(4):
 return 4 * factorial(3)

factorial(3):
 return 3 * factorial(2)

factorial(2):
 return 2 * factorial(1)

factorial(1):
 return 1

Common Issues
● You can’t instantiate an interface

○ Interfaces describe methods
○ Classes implement those methods

● Recursive functions need base cases
○ If you get a stack overflow error, you probably forgot a base case (or your program missed it)
○ Recursion is powerful but requires a “leap of faith” in the recursive step

● Objects can be null, primitives can’t
○ Watch out for NPE’s
○ Make sure you are testing equality correctly
○ Careful with pointers!

● Test case exhaustiveness directly correlates with better functioning program

Advice
- CIS 1210 is a little different than 1200
- Small stylistic things - make sure to name things in ways that you can remember,

don’t leave commented code, write good comments for yourself
- Before starting, think about how to implement things! Plan it out! Don’t just start

coding.
- When are good times to save or store things?
- What kind of data structures do you want to use? How will these change your runtime?

- Plan out test cases
- Write out a few edge ones beforehand

- Use the debugger

