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Counting

Counting is a part of combinatorics, an area of mathematics which is concerned with the
arrangement of objects of a set into patterns that satisfy certain constraints. We will mainly
be interested in the number of ways of obtaining an arrangement, if it exists.

Before we delve into the subject, let’s take a small detour and understand what a set is.
Below are some relevant definitions.

• A set is an unordered collection of distinct objects. The objects of a set are sometimes
referred to as its elements or members. If a set is finite and not too large it can be
described by listing out all its elements, e.g., {a, e, i, o, u} is the set of vowels in
the English alphabet. Note that the order in which the elements are listed is not
important. Hence, {a, e, i, o, u} is the same set as {i, a, o, u, e}. If V denotes the set of
vowels then we say that e belongs to the set V , denoted by e ∈ V or e ∈ {a, e, i, o, u}.

• Two sets are equal if and only if they have the same elements.

• The cardinality of S, denoted by |S|, is the number of distinct elements in S.

• A set A is said to be a subset of B if and only if every element of A is also an element
of B. We use the notation A ⊆ B to denote that A is a subset of the set B, e.g.,
{a, u} ⊆ {a, e, i, o, u}. Note that for any set S, the empty set {} = ∅ ⊆ S and S ⊆ S.
If A ⊆ B and A 6= B the we say that A is a proper subset of B; we denote this by
A ⊂ B. In other words, A is a proper subset of B if A ⊆ B and there is an element
in B that does not belong to A.

• A power set of a set S, denoted by P (S), is a set of all possible subsets of S. For
example, if S = {1, 2, 3} then P (S) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.
In this example |P (S)| = 8.

• Some of the commonly used sets in discrete mathematics are: N = {0, 1, 2, 3, . . .},
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, Q = {p/q | p ∈ Z and q ∈ Z ,and q 6= 0}, and R is the
set of real numbers.

• Another way to describe a set is by explicitly stating the properties that all members
of the set must have. For instance, the set of all positive even integers less than
100 can be written as {x |x is a positive even integer less than 100} or {x ∈ Z+ |x <
100 and x = 2k, for some integer k}. Similarly, the set {2, 4, . . . , 12} can be written
as {2n | 1 ≤ n ≤ 6 and n ∈ N} or {n+ 1 |n ∈ {1, 3, 5, 7, 11}}.

Understanding the above terminology related to sets is enough to get us started on counting.

Theorem. If m and n are integers and m ≤ n, then there are n−m+ 1 integers from m
to n inclusive.
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Example. How many three-digit integers (integers from 100 to 999 inclusive) are divisible
by 5?

Solution. The first number in the range that divisible by 5 is 100 (5×20) and the last one
that is divisible by 5 is 995 (5×199). Using the above theorem, there are 199−20+1 = 180
numbers from 100 to 999 that are divisible by 5.

Tree Diagram. A tree diagram is a very useful tool for systematically keeping track of
all possible outcomes of a combinatorial process. We will also use this tool when we study
probability.

Example. Teams A and B are to play each other in a best-of-three match, i.e., they play
each other until one team wins two games in a row or a total of three games are played.
What is the number of possible outcomes of the match? What does the possibility tree
look like if they play three games regardless of who wins the first two?

Solution. The possibility trees for the two cases are shown in Figure 1. From the tree
diagram it is clear that there are 6 outcomes in the first case and 8 in the second case.
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Figure 1: Tree diagrams.

Multiplication Rule. If a procedure can be broken down into k steps and

the first step can be performed in n1 ways,
the second step can be performed in n2 ways, regardless of how the first step
was performed,
...
the kth step can be performed in nk ways, regardless of how the preceding steps
were performed, then

the entire procedure can be performed in n1 · n2 · · ·nk ways.

To apply the multiplication rule think of objects that you are trying to count as the output
of a multi-step operation. The possible ways to perform a step may depend on how the
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preceding steps were performed, but the number of ways to perform each step must be
constant regardless of the action taken in prior steps.

Example. An ordered pair (a, b) consists of two things, a and b. We say that a is the
first member of the pair and b is the second member of the pair. If M is an m-element set
and N is an n-element set, how many ordered pairs are there whose first member belongs
to M and whose second member belongs to N?

Solution. An ordered pair can be formed using the following two steps.

Step 1. Choose the first member of the pair from the set M .

Step 2. Choose the second member of the pair from the set N .

Step 1 can be done in m ways and Step 2 can be done in n ways. From the multiplication
rule it follows that the number of ordered pairs is mn.

Example. A local deli that serves sandwiches offers a choice of three kinds of bread and
five kinds of filling. How many different kinds of sandwiches are available?

Solution. A sandwich can be made using the following two steps.

Step 1. Choose the bread.

Step 2. Choose the filling.

Step 1 can be done in 3 ways and Step 2 can be done in 5 ways. From the multiplication
rule it follows that the number of available sandwich offerings is 15.

Example. The chairs of an auditorium are to be labeled with a upper-case letter and a
positive integer not exceeding 100. What is the largest number of chairs that can be labeled
differently?

Solution. A chair can be labeled using the following two steps.

Step 1. Choose the upper-case letter.

Step 2. Choose the number.

Step 1 can be done in 26 ways and Step 2 can be done in 100 ways. From the multiplication
rule it follows that the number of possible labelings is 2600.

Example. A typical PIN is a sequence of any four symbols chosen from 26 letters in the
alphabet and the 10 digits, with repetition allowed. How many different PINS are possible?
What happens if repetition is not allowed?
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Solution. A PIN can be formed using the following steps.

Step 1. Choose the alphanumeric for the first position.

Step 2. Choose the alphanumeric for the second position.

Step 3. Choose the alphanumeric for the third position.

Step 4. Choose the alphanumeric for the fourth position.

When repetition is allowed, each step can be done in 36 ways and hence the number of
possible PINS is 364. When repetition is not allowed, the number of ways of doing Step 1
is 36, the number of ways of doing Step 2 is 35, the number of ways of doing Step 3 is 34,
and the number of ways of doing Step 4 is 33. By multiplication rule, the number of PINs
in this case is 36× 35× 34× 33.

Example. Three officers - a president, a treasurer, and a secretary - are to be chosen
from among four people: Ann, Bob, Clyde, and Dan. Suppose that for various reasons,
Ann cannot be the president and either Clyde or Dan must be the secretary. In how many
ways can the officers be chosen?

Solution. Attempt 1. A set of three officers can be formed as follows.

Step 1. Choose the president.

Step 2. Choose the treasurer.

Step 3. Choose the secretary.

There are 3 ways to do Step 1. There are 3 ways of doing Step 2 (all except the person
chosen in Step 1), and 2 ways of doing Step 3 (Clyde or Dan). By multiplication rule, the
number of different ways of choosing the officers is 3× 3× 2 = 18.

The above solution is incorrect because the number of ways of doing Step 3 depends
upon the outcome of Steps 1 and 2 and hence the multiplication rule cannot be applied. It
is easy to see this from the tree diagram in Figure 2.

Attempt 2. A set of three officers can be formed as follows.

Step 1. Choose the secretary.

Step 2. Choose the president.

Step 3. Choose the treasurer.

Step 1 can be done in 2 ways (Clyde or Dan). Step 2 can be done in 2 ways (Ann cannot
be the president and the person chosen in Step 1 cannot be the president). Step 3 can be
done in 2 ways (either of the two remaining people can be the treasurer). By multiplication
rule, the numberof ways in which the officers can be chosen is 2× 2× 2 = 8.

From the previous example we learn that there may not be a fixed order in which the
operations have to be performed, and by changing the order a problem may be more readily
solved by the multiplication rule. A rule of thumb to keep in mind is to make the most
restrictive choice first.
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Figure 2: Tree diagram. In the tree A, B, C, stand for Ann, Bob, and Clyde respectively.

Example. Recall that the power set P (S) of a set S is the set of all possible subsets of
S. If S = {x1, x2, . . . , xn}, what is P (S)?

Solution. A subset of S can be constructed in n steps such that in step i, 1 ≤ i ≤ n, we
decide whether to choose xi or not. Each step can be performed in 2 ways regardless of the
decisions made in the previous steps. By using the multiplication rule, the total number of
subsets of S equals 2n.

Example. How many odd numbers between 1000 and 9999 have distinct digits?

Solution.
Attempt 1: An odd number from 1000 through 9999 can be constructed in four steps as
follows.

Step 1. Choose the first digit.

Step 2. Choose the second digit.

Step 3. Choose the third digit.

Step 4. Choose the fourth digit.

Observe that the number of ways of performing Step 4 depends upon the choices made in
the earlier steps. For example, if the choices made in the first three steps are 1, 3, and 5,
then Step 4 can be performed in two ways. However, if the choices made in the first three
steps are 2, 4, and 6 then Step 4 can be performed in five ways. Hence, we cannot apply
multiplication rule to solve the problem in the above manner.

Attempt 2: An odd number from 1000 through 9999 can be constructed in four steps as
follows.
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Step 1. Choose the fourth digit.

Step 2. Choose the third digit.

Step 3. Choose the second digit.

Step 4. Choose the first digit.

Note that the number of ways of performing Step 4 depends upon whether a zero was
chosen in the earlier steps. If a zero was chosen in either Step 2 or Step 3 then the number
of ways of performing Step 4 is 7, otherwise it is 6. Hence, multiplication rule cannot be
applied to solve the problem in the above manner.

Attempt 3. An odd number from 1000 through 9999 can be constructed in four steps as
follows.

Step 1. Choose the fourth digit.

Step 2. Choose the first digit.

Step 3. Choose the second digit.

Step 4. Choose the third digit.

There are 5 ways to perform Step 1, 8 ways to perform Step 2, 8 ways to perform Step 3,
and 7 ways to perform Step 4. Note that the number of ways of doing each step is inde-
pendent of the choices made in the earlier steps. By the multiplication rule, the number of
odd numbers from 1000 through 9999 equals 5× 8× 8× 7 = 2240.

Q. How many even numbers between 1000 and 9999 have distinct digits? Note that the
solution to the above problem does not work for this one.

Permutations.

A permutation of a set of distinct objects is an ordering of the objects in a row. For exam-
ple, the set of elements x, y, and z has six permutations: xyz, xzy, yxz, yzx, zxy, zyx.

In general, how many permutations are possible if we have a set of n distinct objects?

A permutation can be obtained in a sequence of n steps such that in step i, 1 ≤ i ≤ n,
we choose the ith element in the ordering. Note that step i can be performed in i ways
regardless of the choices made in the first i − 1 steps. By multiplication rule, the number
of permutations is

n× n− 1× n− 2× · · · × 2× 1 = n!.

Example. Consider the set of letters {a, b, c, d, e, f, g, h}. (a) How many possible permu-
tations are there of these letters? (b) How many permutations of these letters contain the
substring abc?
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Solution.
(a) There are 8 distinct elements and hence 8! permutations.
(b) We consider the string abc as one unit and that along with the remaining elements
amounts to 6 distinct elements. Hence there are 6! possible permutations.

The following question was raised in class. Can we solve part (b) from first principles? We
can do it as follows.
A permutation of letters consisting of substring abc can be constructed in eight steps as
follows. In Steps 1, 2, and 3, choose the positions for a, b, and c, respectively. In Step i,
4 ≤ i ≤ 8, choose position for the ith element in the set. Step 1 can be performed in 6 ways
as a can be placed only in the first six positions. Choosing a position for a also decides
positions for b and c. Hence, Steps 2 and 3 can be performed in exactly 1 way. Step i,
4 ≤ i ≤ 8 can be performed in 8− (i− 1) ways regardless of the choices made in the earlier
steps. By the multiplication rule, the number of required permutations is given by

6× 1× 1× 5× 4× 3× 2× 1 = 6!

Permutations of Selected Elements.

We looked at permutations of n elements out of the available n elements. Now we will
consider permutations of r elements out of the available n elements. Such an arrangement
is called an r-permutation. For example, ab, ba, ac, ca, bc, cb are all 2-permutations of the
set {a, b, c}.

Let P (n, r) denote the number of r-permutations of a set of n elements. What is the value
of P (n, r)?

Forming an r-permutation of a set of n elements can be thought of as an r-step process
such that in step i, 1 ≤ i ≤ r, we choose the ith element of the ordering. There are
n − (i − 1) = n − i + 1 ways of performing step i. By the multiplication rule, the number
of r-permutations equals

P (n, r) = n× n− 1× n− 2× · · · × n− (r − 1)

= n× n− 1× n− 2× · · · × n− r + 1

=
n× (n− 1)× · · · × (n− r + 1)× (n− r)× · · · × 1

n− r × (n− r − 1)× (n− r − 2)× · · · × 1

=
n!

(n− r)!

Example. How many ways are there to select a first-prize winner, a second-prize winner,
and a third-prize winner from 100 different contestants?

Solution. Selecting the winners can be done in 3 steps with each step i, 1 ≤ i ≤ 3
choosing the winner in the ith place. Step i can be performed in 100 − (i − 1) ways. By
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multiplication rule, the total number of possible ways in which the prizes can be given is
100× 99× 98 = 970200. Note that this is same as P (100, 3).

Example. In how many ways can we order 26 letters of the alphabet so that no two of
the vowels a, e, i, o, u occur consecutively?

Solution. The task of ordering the letters so that no two vowels appear consecutively can
be performed in two steps.

Step 1. Order the 21 consonants.

Step 2. Choose locations for the 5 vowels. The vowels can be placed before the
consonants, between the consonants and after the consonants.

Step 1 can be performed in 21! ways. To count the number of ways of performing Step 2,
observe that there is only one location for placing a vowel before and after the consonants,
and 20 locations for placing the vowels between the consonants. This gives a total of 22
valid locations for placing 5 vowels. Thus the number of ways of placing the 5 vowels in 5
of the 22 locations is P (22, 5). This is because there are 22 locations for a, 21 for e, 20 for
i, 19 for o, and 18 for u. By multiplication rule, the total number of orderings in which no
two vowels occur consecutively equals

21!× P (22, 5) =
21!× 22!

17!

The Inclusion-Exclusion Formula.

If A,B, and C are any finite sets, then

|A ∪B| = |A|+ |B| − |A ∩B|
|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|

+|A ∩B ∩ C|

If we have finite sets A1, A2, . . . , An then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =

n∑
i=1

|Ai| −
∑
i,j
i<j

|Ai ∩Aj |+
∑
i,j,k
i<j<k

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1| ∩ni=1 Ai|

Observe that if the sets A,B, and C are mutually disjoint, i.e., A∩B = A∩C = B∩C = ∅
then we get

|A ∪B| = |A|+ |B|
|A ∪B ∪ C| = |A|+ |B|+ |C|

This is often called the addition rule or the sum rule.
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Example. In how many ways can we select two books from different subjects among five
distinct computer science books, three distinct math books, and two distinct art books?

Solution. The set of all possible two books from different subjects can be partitioned into
three subsets, S1, S2, and S3. The subset S1 contains two books belonging to computer
science and math, the subset S2 contains two books belonging to computer science and art,
and the subset S3 contains two books belonging to math and art. We have

|S1| = 5× 3 = 15

|S2| = 5× 2 = 10

|S3| = 3× 2 = 6

By the addition rule, total number of ways of selecting 2 books from different subjects
equals |S1|+ |S2|+ |S3| = 31.

Example. A PIN is typically made of four symbols chosen from 26 letters of the alphabet
and the 10 digits, with repetitions allowed. How many PINS contain repeated symbols?

Solution. Let S denote the set of all possible PINs of four alpha-numeric characters. Let
S1 denote the set of all possible PINs of four alpha-numeric characters with no repeated
symbols. Let S2 denote the set of all possible PINs of four alpha-numeric characters with
some symbols repeated. By the addition rule,

|S| = |S1|+ |S2|

By simple application of multiplication rule, we see that |S| = 364 = 1679616 and |S1| =
36 × 35 × 34 × 33 = 1413720. Plugging these values in the above equation, we get |S2| =
265896.

Example. (a) How many integers from 1 through 1000 are multiples of 3 or multiples of
5?
(b) How many integers from 1 through 1000 are neither multiples of 3 nor multiples of 5?

Solution. (a) Let S = {1, 2, 3, . . . , 1000}. Let M ⊆ S be the set of integers that are
multiples of 3 or multiples of 5. Let M1 ⊆ S be the set of integers that are multiples of 3.
Let M2 ⊆ S be the set of integers that are multiples of 5. Note that the first integer in S
that is divisible by 3 is 3 = 3×1. The last integer in S that is divisible by 3 is 999 = 3×333.
Thus, |M1| = 333. Similarly, |M2| = 200. Note that M1 and M2 are not disjoint, i.e., there
are integers like 15 that are divisible by 3 and by 5 and hence exist in M1 as well as M2.
We have double-counted them. So now, let’s find the size of the set M1 ∩M2. Observe
that each element in M1 ∩M2 must be a multiple of 3 × 5 = 15. The first number in S
that is a multiple of 15 is 15 = 15× 1 and the last number in S that is a multiple of 15 is
990 = 15× 66. Thus, |M1 ∩M2| = 66. By the inclusion-exclusion formula, we get

|M | = |M1|+ |M2| − |M1 ∩M2| = 333 + 200− 66 = 467
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(b) Let N ⊆ S be the set of integers that are neither multiples of 3 nor multiples of 5. Note
that the sets M and N form a partition of the set S. Applying the addition rule we get

|S| = |M |+ |N |
∴ |N | = |S| − |M |

= 1000− 467

= 533

Example. How many strings are there of four lower-case letters that have the letter x in
them?

Solution. Let S be the set of all possible four-letter strings that can be constructed using
lower-case letters. The set S can be partitioned into two sets S1 and S2 where S1 is the set
of all strings that contain at least one x and S2 is the set of strings that do not contain x.
Hence we have

|S| = |S1|+ |S2| (1)

Each string in S and S2 can be constructed using the following four steps. In Step i, 1 ≤
i ≤ 4, we choose the letter in the ith location of the string.

While constructing a string in S each of the four steps can be performed in 26 ways.
While constructing a string in S2 each of the four steps can be performed in 25 ways. Thus
|S| = 264 and |S2| = 254. Substituting these values in equation (1) we get

|S1| = 264 − 254 = 66351

Incorrect Solution. Here is an incorrect solution. Can you figure out what is wrong?

A four letter string that contains x can be constructed in two steps as follows. In Step 1
we choose one of the four positions for x (4 ways of doing this). In Step 2 we choose three
letters for the remaining three places (263 ways of doing this). By the multiplcation rule,
there are 4 · 263 = 70304 four letter strings that contain x.

Example. How many even 4-digit numbers have no repeated digits?

Solution. Let S be the set of all 4-digit numbers with distinct digits. Let S0 be a set
that contains all 4-digit numbers with distinct digits that end in a zero. Let S1 be the set
of all 4-digit numbers with distinct digits that end in 2, 4, 6, 8. Note that the sets S0 and
S1 partition the set S and hence we have

|S| = |S0|+ |S1|

The procedure for constructing a number in S0 is as follows: in step 1, we choose the digit
in position 4, in steps 2,3,4, we choose the digits in positions 1,2,3, respectively. There is
only 1 way to do step 1, 9 ways to do step 2, 8 ways to do step 3, and 7 ways to do step 4.
By the Multiplication Rule, |S0| = 1× 9× 8× 7 = 504.

A number in S1 can be constructed similarly and hence |S1| = 4× 8× 8× 7 = 1792.
Hence, |S| = 504 + 1792 = 2296.
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Combinations.

Let n and r be non-negative integers. An r-combination of a set of n elements means an
unordered selection of r of the n elements of S. The symbol

(
n
r

)
(read as “n choose r”)

denotes the number of r-combinations of a set of n elements. This is same as the number
of subsets of size r that can be chosen from a set of n elements.

The following numbers can be verified easily.

(
n

r

)
=


0 if r > n
1 if r = 0 or r = n
n if r = 1

Do you see the distinction between a r-permutation and a r-combination? A r-permutation
is an ordered selection of r elements, i.e., both, which r elements, as well as the order in
which they are chosen are important. Two r-permutations are the same if the r elements
chosen are the same and they are chosen in the same order. In contrast, in a r-combination,
only the choice of r elements is important. The order in which the r elements are chosen
is irrelevant. Two r-combinations are the same if they have the same r elements regardless
of the orders of selection of these elements.

In general, what is the value of
(
n
r

)
, i.e., how many r-combinations are possible if we have

a set of n distinct objects?
We will answer this question by giving an expression that relates

(
n
r

)
and P (n, r). A r-

permutation can be obtained in two steps as follows.

Step 1. Choose r elements from the available n elements.

Step 2. Arrange the chosen r elements.

Step 1 can be performed in
(
n
r

)
ways. Step 2 can be performed in r! ways. By the multi-

plication rule, the total number of r-permutations is given by

P (n, r) =

(
n

r

)
× r!

Rearranging the terms of the above equation we get(
n

r

)
=
P (n, r)

r!
=

n!

r!(n− r)!

Example. We have a pool of 14 players from which 11 players must be chosen to play a
cricket match? How many 11-member teams are possible?

Solution. The number of distinct 11-member teams is the same as the number of subsets
of size 11 from the set of 14 players. This is given by(

14

11

)
=

14!

11!3!
=

12× 13× 14

1× 2× 3
= 364.
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Example. Consider a set of twenty-five points, no three of which are collinear. How many
straight lines do they determine? How many triangles do they determine?

Solution. Since no three points lie on a straight line, every two points determine a straight
line. The number of straight lines equals the number of 2-combinations of a 25-element set.
This is given by (

25

2

)
=

25!

2!23!
=

24× 25

1× 2
= 300.

Similarly every three points determine a triangle. Thus the number of triangles is given by(
25

3

)
=

25!

3!22!
=

23× 24× 25

1× 2× 3
= 2300.

Example. From a group of 8 women and 6 men, how many different committes consisting
of 3 women and 2 men can be formed? What if 2 of the men are feuding and refuse to serve
on the committee together?

Solution. The procedure of forming a committee of 3 women and 2 men is as follows.

Step 1. Choose the 3 women.
Step 2. Choose the 2 men

Step 1 can be done in
(

8
3

)
ways. Step 2 can be done in

(
6
2

)
ways. Using the multiplication

rule, the total number of possible committees is
(

8
3

)
×
(

6
2

)
= 840.

The second part of the question can be solved as follows. Let S1 be the set of all
possible committees that do not contain the two feuding men. Let S2 be the the set of all
possible committees that contain exactly one of the two feuding men. Clearly, the no. of
possible committes that do not contain the two feuding men together equals |S1| + |S2|.
Using the reasoning used in the first part of the question we get |S1| =

(
8
3

)
×
(

4
2

)
= 336 and

|S2| = 2
(

8
3

)
×
(

4
1

)
= 448. Hence the total number of committees without the two feuding

men together is 336 + 448 = 784.
The answer to the second part could also be derived by finding the number of all possible

committees and then subtracting the number of committees in which the two feuding men
are together. There are

(
8
3

)(
6
2

)
= 840 committees in all out of which

(
8
3

)(
2
2

)
= 56 committees

contain the two feuding men. Thus there are 840 − 56 = 784 committees in all that have
non-feuding men.

Example. There are 15 students enrolled in a course, but exactly 12 students attend on
any given day. The classroom for the course has 25 distinct seats. How many different
classroom seatings are possible?

Solution. A classroom seating can be constructed in two steps as follows.

Step 1. Choose 12 students out of 15 that are enrolled.

Step 2. Arrange 12 students in 25 distinct seats available.
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Step 1 can be performed in
(

15
12

)
ways. Step 2 can be performed in P (25, 12) ways. By the

multiplication rule, the number of different classroom seatings possible is given by(
15

12

)
× P (25, 12) =

15!

12!3!
× 25!

13!

Example. How many 8-letter strings can be constructed by using the 26 letters of the
alphabet if each string contains 3,4, or 5 vowels? There is no restriction on the number of
occurrences of a letter in the string.

Solution. Let E be the set of 8-letter strings that contain at least 3 vowels. Let Ei be
the set of 8-letter strings containing exactly i vowels.

An element of Ei, i.e., a 8-letter string with exactly i vowels, can be constructed using the
following steps.

Step 1. Choose i locations out of the available 8 locations for vowels.

Step 2. Choose the vowels for each of the i locations.

Step 3. Choose the consonants for each of the remaining 8− i locations.

Step 1 can be performed in
(

8
i

)
ways. Step 2 can be performed in 5i ways. Step 3 can be

performed in 218−i ways. By the multiplication rule, the number of 8-letter strings with
exactly i vowels is given by

|Ei| =
(

8

i

)
5i218−i

Since the sets E3, E4, and E5 partition the set E, by the addition rule we get

|E| =
5∑
i=3

|Ei| =
5∑
i=3

(
8

i

)
5i218−i

The following question was raised in class. What if we want to count all 8-letter strings with
distinct letters that have 3, 4, or 5 vowels? In this case, the above procedure still applies.
However, the number of ways of doing each step changes. Step 1 can be performed in

(
8
i

)
ways. Step 2 can be performed in P (5, i) ways. Step 3 can be performed in P (21, 8 − i)
ways. By the multiplication rule, the number of 8-letter strings with distinct letters that
have exactly i vowels is given by (

8

i

)
P (5, i)P (21, 8− i)

The total number of 8-letter strings with distinct letters that have 3, 4, or 5 vowels is

5∑
i=3

(
8

i

)
P (5, i)P (21, 8− i)
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Permutations of Multisets.

Let S be a multiset that consists of n objects of which

n1 are of type 1 and indistinguishable from each other.
n2 are of type 2 and indistinguishable from each other.
...
nk are of type k and indistinguishable from each other.

and suppose n1 + n2 + . . .+ nk = n. What is the number of distinct permutations of the n
objects in S?

A permutation of S can be constructed by the following k-step process:

Step 1. Choose n1 places out of n places for type 1 objects.

Step 2. Choose n2 places out of the remaining n− n1 places for type 2 objects.

. . . . . .

Step k. Choose nk places of the remaining unused places for type k objects.

By the multiplication rule, the total number of permutations of n objects in S is(
n

n1

)(
n− n1

n2

)
· · ·
(
n− n1 − n2 − · · · − nk−1

nk

)
=

n!

n1!(n− n1)!
· (n− n1)!

n2!(n− n1 − n2)!
· · · n− n1 − n2 − · · · − nk−1

nk!(n− n1 − · · · − nk)!

=
n!

n1!n2! · · ·nk!

Example. How many permutations are there of the word MISSISSIPPI?

Solution. We want to find the number of permutations of the multiset {1 ·M, 4 · I, 4 ·
S, 2 · P}. Thus, n = 11, n1 = 1, n2 = 4, n3 = 4, n4 = 2. Then number of permutations is
given by

n!

n1!n2!n3!n4!
=

11!

1!4!4!2!

Example. Consider n distinct objects and k bins labeled B1, B2, . . . , Bk. How many
ways are there to distribute the objects in the bins so that bin Bi receives ni objects and∑k

i=1 ni = n?

Solution. A partition of n objects into k labeled bins, B1, B2, . . . , Bk such that bin Bi
gets ni objects can be constructed in k steps. Step i, 1 ≤ i ≤ k chooses ni objects that go in
box Bi from the remaining objects. Step i, 1 ≤ i ≤ k can be performed in

(
n−n1−n2−···−ni−1

ni

)
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ways. By the multiplication rule, the total number of ways to achieve the required partition
equals (

n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(
n− n1 − n2 − · · · − nk−1

nk

)
=

n!

n1!n2! · · ·nk!

Another way of arriving at the solution is as follows. Let the distinct objects be num-
bered 1, 2, . . . , n. Consider the multiset A = {n1 · B1, n2 · B2, . . . , nk · Bk}. The procedure
of obtaining the required partition can be done in k + 1 steps as follows. In Step 0, we
obtain a permutation P of the multiset A. In step i, 1 ≤ i ≤ k, bin Bi gets the objects
corresponding to the positions of ’Bi’ in P .

Step 1 can be done in n!
n1!n2!···nk! ways. There is exactly one way to do each of the

remaining steps. Hence, by the multiplication rule, the required answer is

n!

n1!n2! · · ·nk!

Example. In how many ways can eight distinct books be divided among three students
if Bill gets four books and Sharon and Marian each get two books?

Solution. Such partition can be obtained in three steps.

Step 1. Choose 4 books for Bill out of the available 8 books.

Step 2. Choose 2 books for Sharon out of the remaining 4 books.

Step 3. Choose 2 books for Marian out of the remaining 2 books.

Step 1 can be performed in
(

8
4

)
ways. Step 2 can be performed in

(
4
2

)
ways. Step 3 can be

performed in
(

2
2

)
= 1 way. By the multiplication rule, the total number of possible divisions

is given by (
8

4

)(
4

2

)
=

8!

4!4!
× 4!

2!2!
= 420.

r-Combinations with Repetition Allowed.

We have seen that there are
(
n
r

)
ways of choosing r distinct elements from a set of n distinct

elements. What if we allow elements to be repeated? In other words, we want to find the
number of ways there are to choose a multiset of r elements from a multiset of n distinct
elements with infinite copies of each of the n elements available?

The following method was suggested in class.
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A multiset of r elements can be constructed in r steps as follows. In Step i, choose one of
the n elements. Since each step can be done in n ways, there are nr multisets of r elements.
Is this correct? No, this is not correct. For example, let S = {a, b}. Suppose we want
to find the number of 2-combinations of S with repetition allowed. Note that the above
procedure would consider the sets {a, b} and {b, a} as different whereas they are the same
multiset and should not be counted twice. Using the above solution we get the answer as
4, but the correct answer is 3. In other words, the above procedure gives incorrect answer
as it pays attention to the order of the r elements. We give the correct solution below.

Think of the n elements of the set as categories formed using n − 1 vertical bars (sticks).
Then each multiset of size r can be represented as a string of n−1 vertical bars (to separate
the n categories) and r crosses (to represent the r elements to be chosen). The number
of crosses in each category represents the number of times the object represented by that
category is chosen. Note that each multiset of size r (chosen from a multiset of n objects,
with infinite copies of each object), corresponds to exactly one way to arrange the n − 1
sticks and r crosses and for each arrangement of n− 1 sticks and r crosses, there is exactly
one multiset of size r. Thus the number of multisets of size r is the same as the number
of permutations of the multiset {(n− 1) · |, r · ×}. The number of strings of n− 1 vertical
bars and r crosses is the number of ways to choose r positions from the available r+ n− 1
positions. The r positions chosen will contain the crosses and the remaining positions will
have the vertical bars. Thus the total number of possible ways to choose multisets of size
r from a multiset of n objects with infinite copies of each object available is given by(

n+ r − 1

r

)
=

(n+ r − 1)!

(n− 1)!r!

Example. Consider 3 books: a computer science book, a math book, and a history book.
Suppose the library has at least 6 copies of each of these books. How many ways are there
to select 6 books?

Solution. The no of ways is
(

6+3−1
6

)
= 8!

6!2! = 28.

Example. How many solutions are there to the equation x1+x2+x3+x4 = 10 if x1, x2, x3,
and x4 are non-negative integers? What if each xi ≥ 1?

Solution. Think of x1, x2, x3, and x4 as categories in which we must place 10 ×’s. The
number of ×’s in each category represents the value of the corresponding variable in the
equation. The number of solutions is the number of 10 multisets of a 4-element set. This
is given by (

4 + 10− 1

10

)
=

(
13

10

)
= 286

If each xi ≥ 1, we put one × in each category to start with. Then we distribute the
remaining 6 ×’s among the categories. Such a distribution can be represented by a string
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of 3 vertical bars and 6 crosses. The number of such distributions are(
6 + 3

6

)
=

(
9

6

)
= 84

Example. What is the number of non-decreasing sequences of length 10 whose terms are
taken from 1 through 25?

Solution. The procedure of constructing a non-decreasing sequence of length 10 using
integers from 1 through 25 is as follows: in step 1, choose 10 numbers with repetition
allowed, from {∞ · 1,∞ · 2, . . . ,∞ · 25}, and in step 2, order the chosen numbers in non-
decreasing order. Note that the number of ways to do Step 1 is the same as the number
of permutations of the multiset {24 · |, 10 · ×}, since we can think of the 25 digits as 25
categories (created using 24’|’) in which 10 ×’s are to be placed. There is exactly one way
to do step 2. Thus, the total number of ways that this can be done is given by

(
34
10

)
.

Example. How many ways are there to choose a 5-letter strings from the 26-letter English
alphabet with replacement, where strings that are anagrams are considered the same?

Solution. Let S be the set of all 5-letter strings such that if a string is in S then its
anagrams are not in S. We are interested in finding |S|. Note that two words are anagrams
of each other iff the number of occurrences of each letter in the alphabet is the same same
in both words. Thus the |S| is the same as the number of 5-combinations with repetitions
allowed from a multiset {∞ · a,∞ · b,∞ · c, . . . ,∞ · z}. Thus |S| =

(
26+5−1

5

)
=
(

30
5

)
.

Example. There are 15 identical customers and 4 distinct cashiers. How many ways can
the customers line up to the cashiers?

Solution. This problem can be solved using the sticks and crosses method in which n = 4
and r = 15. Thus the answer is

(
4+15−1

3

)
=
(

18
3

)

Combinatorial Proofs

Example. Prove that(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . .+ (−1)n

(
n

n

)
= 0

Solution. We want to prove that(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ . . . =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

Consider a set X = {x1, x2, x3, . . . , xn}. We want to show that the total number of subsets
of X that have even size equals the total number of subsets of X that have odd size. We
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will now show that both these quantities equal 2n−1 from which the claim follows.
An even-sized subset of X can be constructed as follows.

Step 1. Decide whether x1 belongs to the subset of not.
Step 2. Decide whether x2 belongs to the subset of not.
...
Step n. Decide whether xn belongs to the subset of not.

Note that there are 2 choices for each of the first n − 1 steps but exactly one choice for
performing step n. This is because if we have choose an even number of elements from
X \ {xn} then we must leave out xn otherwise we must include xn in the subset. Hence
using the multiplication rule the total number of even-sized subsets of X equals 2n−1. Since
we know that the total number of subsets of X is 2n, the total number of odd-sized subsets
of X is 2n − 2n−1 = 2n−1.

We will prove a few identities using counting techniques. Specifically, we will use the
following technique. To prove an identity we will pose a counting question. We will then
answer the question in two ways, one answer will correspond to LHS and the other would
correspond to the RHS. Since both answers are to the same question, the two answers must
be the same.

Example. Show that
(
n
r

)
=
(
n
n−r
)
.

Solution. We can of course prove it algebrically. However, here is a combinatorial argu-
ment which provides more intuition. Observe that for every set of r elements that is chosen
there is exactly one set of n− r elements that is not chosen. Thus if a set A has k subsets
of size r: B1, B2, . . . , Bk then each Bi can be paired up with exactly one set of size n− r,
namely its complement A \ Bi. Hence the number of subsets of sizaue r is same as the
number of subsets of size n− r.

We can also prove it by answering the following counting question in two different ways.

Given a set S of n distinct elements how many r-subsets are there of the set S?

Clearly, one answer is
(
n
r

)
, which gives us the left hand side. Another way to solve the

problem is as follows. The procedure of forming a r-subset is as follows.

Step 1: Choose the n− r elements that we want to leave out.
Step 2: Include the remaining r elements in the set.

There are
(
n
n−r
)

ways to do step1 and exactly one way to do step 2. Hence, by the multi-

plication rule, the total number of ways of chooseing r-subsets of S is
(
n
n−r
)
, which gives

us the right hand side.

Pascal’s Formula. If n and k are positive integers with n ≥ k then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
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Proof. We will prove the claim by answering the following counting question in two
different ways.

Given a set X = {x1, x2, . . . , xn} of n distinct elements how many k-subsets are
there of the set X?

Let S be the set of all possible k-subsets of X. Clearly, |S| =
(
n
k

)
, which gives us the left

hand side of the claim. Another way to find |S| is as follows. The set S can be partitioned
into sets S1 and S2, where S1 is the set of all possible k-subsets of X that contain the
element xn and S2 is the set of all possible k-subsets of X that do not contain the element
xn. In any k-subset of X that is in S1, the other k − 1 elements (since xn is already in
the subset) come from X \ {xn}. Since there are

(
n−1
k−1

)
ways of choosing these subsets,

|S1| =
(
n−1
k−1

)
. The k elements of any set in S2 must be chosen from X \ {xn}. There are(

n−1
k

)
ways of doing this. Since S1 and S2 partition the set S, we have

|S| = |S1|+ |S2| =
(
n− 1

k − 1

)
+

(
n− 1

k

)
This gives us the right hand side of the claim.

Example. Prove that
∑n

k=0

(
n
k

)
= 2n.

Solution. We pose the following counting question.

Given a set S of n distinct elements how many subsets are there of the set S?

From earlier lectures, we know that the answer is 2n. This gives us the RHS.

Another way to compute the answer to the question is as follows. The power set P(S)
containing all possible subsets can be partitioned into S0, S1, . . . , Sn, where Si, 0 ≤ i ≤ n,
is the set of all subsets of S that have cardinality i. Thus

|P(S)| = |S0|+ |S1|+ . . .+ |Sn|

=

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n

)
=

n∑
k=0

(
n

k

)
= LHS

This proves the claim.

Example. Prove that
∑n

k=1 k = n(n+1)
2 .

Solution. We pose the following counting question.

How many ways are there to choose two numbers from S = {0, 1, 2, . . . , n}?
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By definition, there are
(
n+1

2

)
= n(n+1)

2 distinct pairs of S. This gives us the RHS.

We can also compute the answer as follows. Let P be the set of all pairs of S. P can be
partitioned into S1, S2, . . . , Sn, where Si, 1 ≤ i ≤ n, is the set of pairs in which i is the
bigger element in the pair. Clearly,

|P | = |S1|+ |S2|+ . . .+ |Sn|
= 1 + 2 + . . .+ n

=
n∑
k=1

k = LHS

This proves the claim.

Example. Give a combinatorial proof to show that

r∑
k=0

(
n

k

)(
m

r − k

)
=

(
n+m

r

)

Solution. We pose the following counting question.

There are n men and m women, where n ≥ r and m ≥ r. How many ways are
there to form a committee of r people from this group of people?

By definition, there are
(
n+m
r

)
distinct committees of r people. This gives us the RHS.

The set S of all possible committees of r people can be partitioned into subsets S0, S1, S2, . . . , Sr,
where Sk is the set of committees in which there are exactly k men and the rest r − k are
women. Note that |Sk| =

(
n
k

)(
m
r−k
)
. Thus we have

|S| =
r∑

k=0

|Sk|

=
r∑

k=0

(
n

k

)(
m

r − k

)
which gives us the left hand side of the expression.

The Binomial Theorem

A binomial is a sum of two terms, such as a+ b. The binomial theorem gives an expression
for (a+ b)n where a and b are real numbers and n is a positive integer.

Theorem. For any real numbers a and b and non-negative integer n

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk
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Proof. Observe that each term in the expansion of (a + b)n is of the form an−kbk, k =
0, 1, 2, . . . , n. How many terms are there of the form an−kbk? This is the same number of
times as there are orderings of n−k a’s and k b’s. This is equal to

(
n
k

)
. Thus the coefficient

of like terms of the form an−kbk is
(
n
k

)
. This proves the theorem.

Example. Prove that 2n =
∑n

k=0

(
n
k

)
Solution. Last week we proved this claim using a counting argument in which we showed
that L.H.S. and R.H.S. count the number of subsets of a set of n elements. Now we will
prove this using the binomial theorem as follows.

2n = (1 + 1)n

=

n∑
k=0

(
n

k

)
(1)n−k(1)k

=

n∑
k=0

(
n

k

)
= R.H.S.

Example. Let n be a positive integer. Then, for all x prove that (1 +x)n =
∑n

k=0

(
n
k

)
xk.

Solution. Using the binomial theorem we get

(1 + x)n =

n∑
k=0

(
n

k

)
1n−kxk =

n∑
k=0

(
n

k

)
xk

Example. Prove that(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . .+ (−1)n

(
n

n

)
= 0

Solution. One way to solve this problem is by substituting x = −1 in the previous
example. When x = −1 the above equation becomes

0n = 0 =

n∑
k=0

(
n

k

)
(−1)k.

A combinatorial proof of the claim was presented earlier.

The Pigeonhole Principle

If k+ 1 or more objects are distributed among k bins then there is at least one bin that has
two or more objects. For example, the pigeon hole principle can be used to conclude that
in any group of thirteen people there are at least two who are born in the same month.
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Example. There are n pairs of socks. How many socks must you pick without looking to
ensure that you have at least one matching pair?

Solution. The pigeonhole principle can be applied by letting n bins correspond to the n
pairs of socks. If we select n + 1 socks and put each one in the box corresponding to the
pair it belongs to then there must be at least one box containing a matched pair.

The Generalized Pigeonhole Principle

If n objects are placed into k boxes, then there is at least one box containing at least dn/ke
objects.

Proof: We will prove the contrapositive. That is, we will show that if each box contains
at most dn/ke − 1 objects then the total number of objects is not equal to n. Assume that
each box contains at most dn/ke − 1 objects. Then, the total number of objects is at most

k
(⌈n
k

⌉
− 1
)
< k

(n
k

+ 1− 1
)

= n

Thus we have shown that the total number of objects is less than n. This completes the
proof.

Using the generalized pigeonhole principle we can conclude that among 100 people, there
are at least d100/12e = 9 who are born in the same month.

Example. Suppose each point in the plane is colored either red or blue. Show that there
always exist two points of the same color that are exactly one feet apart.

Solution. Consider an equilateral triangle with the length of each side being one feet.
The three corners of the triangle are colored red or blue. By pigeonhole principle, two of
these three points must have the same color.

Example. Given a sequence of n integers, show that there exists a subsequence of con-
secutive integers whose sum is a multiple of n.

Solution. Let x1, x2, . . . , xn be the sequence of n integers. Consider the following n sums.

x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn

If any of these n sums is divisible by n, then we are done. Otherwise, each of the n sums
have a non-zero remainder when divided by n. There are at most n − 1 different possible
remainders: 1, 2, . . . n− 1. Since there are n sums, by the pigeonhole principle, at least two
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of the n sums have the same remainder when divided by n. Let p and q, p < q, be integers
such that for some integers c1 and c2,

x1 + x2 + · · ·+ xp = c1n+ r and x1 + x2 + · · ·+ xq = c2n+ r

Subtracting the two sums, we get

xp+1 + · · ·+ xq = (c2 − c1)n

Hence, xp+1 + · · ·+ xq is divisible by n.

Example. Show that in any group of six people there are either three mutual friends or
three mutual strangers.

Solution. Consider one of the six people, say A. The remaining five people are either
friends of A or they do not know A. By the pigeonhole principle, at least d5/2e = 3 of the
five people are either friends of A or are unacquainted with A. In the former case, if any
two of the three people are friends then these two along with A would be mutual friends,
otherwise the three people would be strangers to each other. The proof for the latter case,
when three or more people are unacquainted with A, proceeds in the same manner.

Example. A chess master who has 11 weeks to prepare for a tournament decides to play
at least one game every day but, in order not to tire himself, he decides not to play more
than 12 games during any calendar week. Show that there exists consecutive days during
which the chess master will have played exactly 21 games.

Solution. Let ai, 1 ≤ i ≤ 77, be the total number of games that the chess master has
played during the first i days. Note that the sequence of numbers a1, a2, . . . , a77 is a strictly
increasing sequence. We have

1 ≤ a1 < a2 < . . . < a77 ≤ 11× 12 = 132

Now consider the sequence a1 + 21, a2 + 21, . . . , a77 + 21. We have

22 ≤ a1 + 21 < a2 + 21 < . . . < a77 + 21 ≤ 153

Clearly, this sequence is also a strictly increasing sequence. The numbers a1, a2, . . . , a77, a1+
21, a2 +21, . . . , a77 +21 (154 in all) belong to the set {1, 2, . . . , 153}. By the pigeonhole prin-
ciple there must be two numbers out of the 154 numbers that must be the same. Since no two
numbers in a1, a2, . . . , a77 are equal and no two numbers in a1 +21, a2 +21, . . . , a77 +21 are
equal there must exist i and j such that ai = aj+21. Hence during the days j+1, j+2, . . . , i,
exactly 21 games must have been played.

Benjamin Judd suggested the following nice proof in class. For 1 ≤ i ≤ 77, let gi denote
the number of games played by the chessmaster on day i. Consider the number of games



24 CIS 160 Lecture Notes January 18, 2020

played by the chessmaster during each day of the first three weeks: g1, g2, . . . , g21. By the
constraints described in the question, we have

gi ≥ 1, i = 1, 2, . . . , 21 and
21∑
i=1

gi ≤ 36 (2)

We know that in the sequence of positive integers g1, g2, . . . , g21, there must be a sub-
sequence S : gl, gl+1, gl+2, . . . , gk, 1 ≤ l < k ≤ 21 of consecutive integers whose sum is
divisible by 21 (we proved this earlier in the lecture). Combining this with (2), we conclude
that the sum of the numbers in S must be exactly 21. This means that during the days
l, l + 1, l + 2, . . . , k, the chessmaster played exactly 21 games.

Example. Prove that every sequence of n2 + 1 distinct real numbers, x1, x2, . . . , xn2+1,
contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing.

Solution. We will prove this as follows. We suppose that there is no strictly increasing
subsequence of length n+ 1 and show that there must be a strictly decreasing subsequence
of length n + 1. Let mk, k = 1, 2, . . . , n2 + 1, be the length of the longest increasing
subsequence that begins with xk. Since there is no increasing subsequence of length n+ 1,
for k = 1, 2, . . . , n2 + 1, we have 1 ≤ mk ≤ n.

Solution. We will prove this as follows. We suppose that there is no strictly increasing
subsequence of length n+ 1 and show that there must be a strictly decreasing subsequence
of length n + 1. Let mk, k = 1, 2, . . . , n2 + 1, be the length of the longest increasing
subsequence that begins with xk. Since there is no increasing subsequence of length n+ 1,
for k = 1, 2, . . . , n2 + 1, we have 1 ≤ mk ≤ n. Using the generalized pigeonhole principle,
we conclude that n+ 1 of the numbers m1,m2, . . . ,mn2+1 are equal. Let

mk1 = mk2 = · · · = mkn+1

where 1 ≤ k1 < k2 < · · · < kn+1 ≤ n2 + 1. We will now argue that xk1 > xk2 > · · · > xkn+1 ,
which will complete the proof as we will have a decreasing subsequence of length n + 1.
Assume for contradiction that this is not the case, which means that there is a i, 1 ≤ i ≤
n + 1, such that xki < xki+1

. Then, since ki < ki+1, we could take a longest increasing
subsequence starting with xki+1

and put xki in front to obtain an increasing subsequence
that begins with xki . This implies that mki > mki+1

, which is a contradiction. Hence, for
all i = 1, 2, . . . , n, xki > xki+1

. Thus, we have a decreasing subsequence of length n + 1.
Similarly, we can show that if there is no decreasing subsequence of length n+ 1 then there
must be an increasing sequence of length n+ 1.
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Introduction to Probability

Probability theory has many applications in engineering, medicine, etc. It has also found
many useful applications in computer science, such as cryptography, networking, game the-
ory etc. Many algorithms are randomized and we need probability theory to analyze them.
In this course, our goal is to understand how to describe uncertainty using probabilistic
arguments. To do this we first have to define a probabilistic model.

A probabilistic model is a mathematical description of a random process or an experi-
ment. In a random process exactly one outcome from a set of outcomes is sure to occur but
no outcome can be predicted with certainty. For example, tossing a coin is an experiment.
Below are definitions of entities associated with the probabilistic model.

• The sample space of a random process or experiment is the set of all possible out-
comes. The sample space is often denoted by Ω. Since we are going to study discrete
probability Ω will be finite or countably infinite (such as integers and not real num-
bers).

• The probability space is a sample space together with a probability distribution in
which a probability is assigned to each outcome ω ∈ Ω, such that

– 0 ≤ Pr[ω] ≤ 1

–
∑

ω∈Ω Pr[ω] = 1

In an experiment we are usually interested in the probability with an event occurs. For
example, when tossing a coin we may be interested in knowing the probability that the
result is heads. Below we define formally what an event is and what does it mean to
calculate the probability of an event.

• A subset of the sample space is called an event.

• For any event, A ⊆ Ω, the probability of A is defined as

Pr[A] =
∑
ω∈A

Pr[ω]

We are now ready to work through some problems. Before we proceed, keep in mind
that probability is a slippery topic; it is very easy to make mistakes. Solving the problem
systematically is the key to avoid mistakes. The following four-step process that is described
in the notes by Lehman and Leighton is a way to systematically solve the problem at hand.

(a) Define the sample space, Ω, of the experiment, i.e., find the set of all possible outcomes
of the experiment.

(b) Define the probability distribution.

(c) Find the event of interest, A, i.e., find the subset of outcomes, A ⊆ Ω that are of
interest.

(d) Compute the probability of A by adding up the probabilities of the outcomes in A.



26 CIS 160 Lecture Notes January 18, 2020

Example. On flipping a fair coin what is the probability that the result is heads?

Solution. Ω = {H,T},Pr[H] = Pr[T ] = 1/2, A = {H},Pr[A] = 1/2.

Example. Consider a biased coin in which the probability of heads is 1/3. Suppose we
flip the coin twice. What is the probability that we obtain one tails and one heads?

Solution. Ω = {HH,HT, TH, TT}. The probability distribution is given by

Pr[HH] =
1

3
× 1

3
=

1

9

Pr[HT ] =
1

3
× 2

3
=

2

9

Pr[TH] =
2

3
× 1

3
=

2

9

Pr[TT ] =
2

3
× 2

3
=

4

9

Note that the assigned probabilities form a valid probability distribution. Event A =
{HT, TH}. The probability of the event A is given by

Pr[A] = Pr[HT ] + Pr[TH] =
4

9

Example. We roll two dice. Compute the probability that the two numbers are equal
when (i) two dice are distinct, (ii) the dice are indistinguishable.

Solution. (a) Each outcome of the experiment can be denoted by an ordered pair (ω1, ω2), 1 ≤
ω1, ω2 ≤ 6, where ω1 and ω2 are the numbers on dice 1 and dice 2 respectively. Note that
|Ω| = 36 and each outcome is equally likely. The event that the two numbers are equal
is given by A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. The probability that A occurs is
given by

Pr[A] =
|A|
|Ω|

=
6

36
=

1

6

(b) When the die are indistinguishable, the order of the two numbers is not important,
hence each outcome of the experiment can be denoted by a 2-set {ω1, ω2}, 1 ≤ ω1, ω2 ≤ 6,
where ω1 and ω2 are the numbers on the two die. Note that |Ω| = 21. Each outcome of
the form {ω1, ω2}, ω1 6= ω2 occurs with a probability of 2

36 = 1
18 and outcomes of the form

{ω, ω} occur with the probability of 1
36 . The event that the two numbers are equal is given

by A = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}. The probability that A occurs is given
by

Pr[A] = 6× 1

36
=

1

6

Example. Suppose we throw m distinct balls into n distinct bins. Assume that there
is no bound on the number of balls that a bin contains. What is the probability that a
particular bin, say bin 1, contains all the m balls?
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Solution. Each outcome can be represented by a m-tuple (ω1, ω2, . . . , ωm), where ωi
denotes the bin that contains the ith ball. Note that |Ω| = nm and each outcome is equally
likely. Since there is only one way in which all balls can be in bin 1, the probability of this
event is 1

nm .

Example. What is the probability of rolling a six-sided die six times and having all the
numbers 1 through 6 result (in any order)?

Solution. Each element in Ω can be represented by (ω1, ω2, . . . , ω6), where ωi is the
number that results on the ith roll of the die. Using the multiplication rule we get |Ω| = 66.
Let A ⊆ Ω be the set of outcomes in which the numbers of the rolls are different. By
multiplication rule |A| = 6!. Since each outcome is equally likely, the desired probability is
given by

|A|
|Ω|

=
6!

66
=

5

324

Example. On “Let’s Make a Deal” show, there are three doors. There is a prize behind
one of the doors and goats behind the other two. The contestant chooses a door. Then the
host opens a different door behind which there is a goat. The contestant is then given a
choice to either switch doors or to stay put. The contestant wins the prize if and only if
the contestant chooses the door with the prize behind it. Is it to the contestant’s benefit
to switch doors?

Solution. Each outcome of the sample space can be denoted by a 3-tuple (ω1, ω2, ω3),
where ω1 denotes the door hiding the prize, ω2 denotes the door chosen by the contestant
initially, and ω3 is the door chosen by the host. Now, lets assign probabilities to each of the
outcomes1. There are two types of outcomes, those in which ω1 = ω2 and those in which
ω1 6= ω2. It is easy to verify that there are 6 outcomes of each type. Each outcome of the
first type occurs with a probability of 1

3 ×
1
3 ×

1
2 = 1

18 . If the outcome is of the second type
then there is only one choice for ω3, i.e., there is only one choice of door for the host. Each
outcome of the second type occurs with a probability 1

3 ×
1
3 × 1 = 1

9 . The event in which
the contestant switches doors and wins is the set of all outcomes in which ω1 6= ω2. Since
the size of this set is 6 and each outcome occurs with a probability of 1

9 the probability of
the contestant winning the prize by switching is 6

9 = 2
3 . Thus, it is to contestant’s benefit

to switch.

Inclusion-Exclusion Formula

For two events A and B we have

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B].

1We are making the following assumptions:(i) the prize is equally likely to be behind any of the doors,
(ii) the contestant is equally likely to choose any of the three doors, (iii) the host opens any of the possible
doors with equal probability
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For three events A, B, and C, we have

Pr[A∪B∪C] = Pr[A] + Pr[B] + Pr[C]−Pr[A∩B]−Pr[B∩C]−Pr[A∩C] + Pr[A∩B∩C].

For events A1, A2, . . . , An in some probability space, let S1 = {(i1)|1 ≤ i1 ≤ n}, S2 =
{(i1, i2)|1 ≤ i1 < i2 ≤ n}, and more generally let Sp = {(i1, i2, . . . , ip)|1 ≤ i1 < i2 < . . . ≤
ip ≤ n}. Then we have

Pr[∪ni=1Ai] =
∑
i∈S1

Pr[Ai]−
∑

(i1,i2)∈S2

Pr[Ai1∩Ai2 ]+
∑

(i1,i2,i3)∈S3

Pr[Ai1∩Ai2∩Ai3 ]−· · ·+(−1)n−1 Pr[∩nx=1Ax]

Note that there are 2n−1 non-empty subsets of a set of n events. To compute the probability
of the intersection of every such subset is not possible when n is large. In such cases we
have to approximate the probability of a union of n events. The successive terms of the
above formula actually give an overestimate and underestimate respectively of the actual
probability. In many situations the upper-bound given by the first term itself is quite useful.
It is called the union-bound and is given by

Pr[∪ni=1Ai] ≤
n∑
i=1

Pr[Ai]

Note that when the events are pairwise disjoint, the inequality in the above expression
becomes an equality.

Example. Consider three flips of a fair coin. What is the probability that result is heads
on the first flip or the third flip?

Solution. Let H1 and H2 denote the events that the first flip results in heads and the
third flip results in heads respectively. By the inclusion-exclusion formula, we have

Pr[H1 ∪H2] = Pr[H1] + Pr[H2]− Pr[H1 ∩H2]

=
1

2
+

1

2
− 1

4

=
3

4

Example. When three dice are rolled what is the probability that one of the dice results
in 4?

Solution. Let Fi, i ∈ {1, 2, 3} be the event that the ith dice results in a 4. We are
interested in Pr[F1 ∪ F2 ∪ F3]. By inclusion-exclusion formula we have

Pr[F1∪F2∪F3] = Pr[F1]+Pr[F2]+Pr[F3]−Pr[F1∩F2]−Pr[F1∩F3]−Pr[F2∩F3]+Pr[F1∩F2∩F3]
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Since the events F1, F2, F3 are mutually independent we can rewrite the above expression
as

Pr[F∪F2 ∪ F3] = Pr[F1] + Pr[F2] + Pr[F3]− Pr[F1] Pr[F2]− Pr[F1] Pr[F3]− Pr[F2] Pr[F3]

+ Pr[F1] Pr[F2] Pr[F3]

=
1

6
+

1

6
+

1

6
−
(

1

6
× 1

6

)
−
(

1

6
× 1

6

)
−
(

1

6
× 1

6

)
+

(
1

6
× 1

6
× 1

6

)
=

91

216

An easier way to solve this is as follows. Let Fi be the complement of event Fi, i = 1, 2, 3.

Pr[F1 ∪ F2 ∪ F3] = 1− Pr[F1 ∩ F2 ∩ F3] = 1− (5/6)3 =
91

216

Example. A coin is tossed 10 times. What is the probability that eight or more heads
turn up?

Solution. Let Ei denote the event that exactly i heads turn up. We are interested in
Pr[E8 ∪ E9 ∪ E10]. Since the events Ei are disjoint, we have

Pr[E8 ∪ E9 ∪ E10] = Pr[E8] + Pr[E9] + Pr[E10]

Note that Pr[Ei] =
(

10
i

)
/210. Hence, we have

Pr[E8 ∪ E9 ∪ E10] =
1

210

((
10

8

)
+

(
10

9

)
+

(
10

10

))
=

56

210

Example. (Birthday Paradox) Suppose there are k people in a room and n days in
a year. We are interested in the probability that there are at least two people in the room
with the same birthday. What is the smallest value of k for which this probability is at
least 1/2? Assume that it is equally likely for a person to be born on any of the n days of
the year.

Solution. Let B be the event that at least two people in the room have the same birthday.
We are interested in Pr[B].

Pr[B] = 1− Pr[B]

= 1− P (n, k)

nk

For n = 365, the smallest value of k for which the RHS is at least 1/2 is 23. If k = 40 then
Pr[B] = 0.89, and if k = 60 then Pr[B] = 0.994. This means that if there are 60 people
then it is almost certain that there exists two among them sharing the same birthday. To
illustrate how good our model is, consider the set of presidents of the United States of
America. Through Bill Clinton, 41 people belong to this set. The chances of two of them
sharing the same birthday is at least 89%. Indeed, James Polk (11th president) and Warren
Harding (29th president) are both born on Nov. 2.
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Conditional Probability

We now introduce a very important concept of conditional probability. Conditional prob-
ability allows us to calculate the probability of an event when some partial information
about the result of an experiment is known. As we shall see conditional probability is often
a convenient way to calculate probabilities even when no information about the result of
an experiment is available.

Suppose we want to calculate the probability of event A given that event B has already
occured. We denote this by Pr[A|B] (read as “the probability of A given B”). Since we
know that event B has occured our sample space reduces to the outcomes in B. Is this a
valid probability space? No, because the sum of probabilities of the outcomes in B is less
than 1. How do we change the probabilities so that this is a valid probability distribution
while making sure that the relative probabilities of outcomes in B do not change? We do
this by scaling the probability of all sample points in B by 1

Pr[B] . Thus for each sample
point ω ∈ B,

Pr[ω|B] =
Pr[ω]

Pr[B]

To calculate Pr[A|B] we just sum up the probabilities of sample points in A ∩B. Thus we
get

Pr[A|B] =
∑

ω∈A∩B
Pr[ω|B] =

∑
ω∈A∩B

Pr[ω]

Pr[B]
=

Pr[A ∩B]

Pr[B]

In order to avoid division by 0, we only define Pr[A|B] when Pr[B] > 0. Conditional
probabilities can sometimes get tricky. To avoid pitfalls, it is best to use the above math-
ematical definition of conditional probability. Note that the R.H.S. of the above equation
are unconditional probabilities.

Example. Suppose we flip two fair coins. What is the probability that both tosses give
heads given that one of the flips results in heads? What is the probability that both tosses
give heads given that the first coin results in heads?

Example. Suppose we flip two fair coins. What is the probability that both tosses give
heads given that one of the flips results in heads? What is the probability that both tosses
give heads given that the first coin results in heads?

Solution. We consider the following events to answer the question.

A: event that both flips give heads.
B: event that one of the flips gives heads.
C: event that the first coin flip gives heads.

Let’s first calculate Pr[A|B].

Pr[A|B] =
Pr[A ∩B]

Pr[B]
=

Pr[A]

Pr[B]
=

1/4

3/4
=

1

3
.
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Figure 3: Tree diagram for the experiment in Example 1.

Similarly we can calculate Pr[A|C] as follows.

Pr[A|C] =
Pr[A ∩ C]

Pr[C]
=

Pr[A]

Pr[C]
=

1/4

1/2
=

1

2
.

The above analysis also follows from the tree diagram in Figure 3.

The Multiplication Rule. For any two events A1 and A2 we have

Pr[A1 ∩A2] = Pr[A1] · Pr[A2|A1]

The above formula follows from the definition of Pr[A2|A1]. This formula can be generalized
to n events. We state the generalization without proof.

Pr[A1∩A2∩· · ·∩An] = Pr[A1]·Pr[A2|A1]·Pr[A3|A1∩A2] · · ·Pr[An|A1∩A2∩A3∩· · ·∩An−1]

Example. The probability that a new car battery functions for over 10,000 miles is 0.8,
the probability that it functions for over 20,000 miles is 0.4, and the probability that it
functions for over 30,000 miles is 0.1. If a new car battery is still working after 10,000 miles,
what is the probability that (i) its total life will exceed 20,000 miles, (ii) its additional life
will exceed 20,000 miles?

Solution. We will consider the following events to answer the question.

L10: event that the battery lasts for more than 10K miles.
L20: event that the battery lasts for more than 20K miles.
L30: event that the battery lasts for more than 30K miles.
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We know that Pr[L10] = 0.8, Pr[L20] = 0.4 and Pr[L30] = 0.1. We are interested in
calculating Pr[L20|L10] and Pr[L30|L10].

Pr[L20|L10] =
Pr[L20 ∩ L10]

Pr[L10]

=
Pr[L20] · Pr[L10|L20]

0.8

=
0.4× 1

0.8

=
1

2

By doing similar calculations it is easy to verify that Pr[L30|L10] = 1
8 .

Example. An urn initially contains 5 white balls and 7 black balls. Each time a ball is
selected, its color is noted and it is replaced in the urn along with two other balls of the
same color. Compute the probability that the first two balls selected are black and the next
two white.

Solution. We will consider the following events to answer the question.

B1: event that the first ball chosen is black.
B2: event that the second ball chosen is black.
W3: event that the third ball chosen is white.
W4: event that the fourth ball chosen is white.

We are interested in calculating Pr[B1 ∩ B2 ∩W3 ∩W4]. Using the Multiplication rule
we get,

Pr[B1 ∩B2 ∩W3 ∩W4] = Pr[B1] · Pr[B2|B1] · Pr[W3|B1 ∩B2] · Pr[W4|B1 ∩B2 ∩W3]

=
7

12
× 9

14
× 5

16
× 7

18

=
35

768

The Total Probability Theorem. Consider events E and F . Consider a sample point
ω ∈ E. Observe that ω belongs to either F or F . Thus, the set E is a disjoint union of two
sets: E ∩ F and E ∩ F . Hence we get

Pr[E] = Pr[E ∩ F ] + Pr[E ∩ F ]

= Pr[F ]× Pr[E|F ] + Pr[F ]× Pr[E|F ]

In general, if A1, A2, . . . , An form a partition of the sample space and if ∀i,Pr[Ai] > 0, then
for any event B in the same probability space, we have

Pr[B] =

n∑
i=1

Pr[Ai ∩B] =

n∑
i=1

Pr[Ai]× Pr[B|Ai]
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Example. A medical test for a certain condition has arrived in the market. According
to the case studies, when the test is performed on an affected person, the test comes up
positive 95% of the times and yields a “false negative” 5% of the times. When the test is
performed on a person not suffering from the medical condition the test comes up negative
in 99% of the cases and yields a “false positive” in 1% of the cases. If 0.5% of the population
actually have the condition, what is the probability that the person has the condition given
that the test is positive?

Solution. We will consider the following events to answer the question.

C: event that the person tested has the medical condition.
C: event that the person tested does not have the condition.
P : event that the person tested positive.

We are interested in Pr[C|P ]. From the definition of conditional probability and the total
probability theorem we get

Pr[C|P ] =
Pr[C ∩ P ]

Pr[P ]

=
Pr[C] Pr[P |C]

Pr[P ∩ C] + Pr[P ∩ C]

=
Pr[C] Pr[P |C]

Pr[C] Pr[P |C] + Pr[C] Pr[P |C]

=
0.005× 0.95

0.005× 0.95 + 0.995× 0.01
= 0.323

This result means that 32.3% of the people who are tested positive actually suffer from the
condition!

Example. A transmitter sends binary bits, 80% 0’s and 20% 1’s. When a 0 is sent, the
receiver will detect it correctly 80% of the time. When a 1 is sent, the receiver will detect
it correctly 90% of the time.
(a) What is the probability that a 1 is sent and a 1 is received?
(b) If a 1 is received, what is the probability that a 1 was sent?

Solution. We will consider the following events.

S0: event that the transmitter sent a 0.
S1: event that the transmitter sent a 1.
R1: event that 1 was received.

(a) We are interested in finding Pr[S1 ∩R1] .

Pr[S1 ∩R1] = Pr[S1]× Pr[R1|S1]

= 0.2× 0.9

= 0.18
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(b) We are interested in finding Pr[S1|R1].

Pr[S1|R1] =
Pr[S1 ∩R1]

Pr[R1]

=
0.18

Pr[R1 ∩ S1] + Pr[R1 ∩ S0]

=
0.18

0.18 + Pr[S0]× Pr[R1|S0]

=
0.18

0.18 + 0.8× 0.2
= 0.5294

Example. An urn contains 5 white and 10 black balls. A fair die is rolled and that
number of balls are chosen from the urn.
(a) What is the probability that all of the balls selected are white?
(b) What is the conditional probability that the die landed on 3 if all the balls selected are
white?

Solution. We will consider the following events.

W : event that all of the balls chosen are white.
Di: event that the die landed on i, 1 ≤ i ≤ 6.

(a) We want to find Pr[W ]. We can do this as follows.

Pr[W ] =

6∑
i=1

Pr[W ∩Di]

=

6∑
i=1

Pr[Di] Pr[W |Di]

=
6∑
i=1

1

6

(
5
i

)(
15
i

)
=

1

6

(
5

15
+

10

105
+

10

455
+

5

1365
+

1

3003

)
= 0.075
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(b) We want to find Pr[D3|W ]. This can be done as follows.

Pr[D3|W ] =
Pr[D3 ∩W ]

Pr[W ]

=
Pr[D3]× Pr[W |D3]

Pr[W ]

=
1/6×

(
5
3

)
/
(

15
3

)
0.075

=
1/6× 10/455

0.075

=
0.00366

0.075
= 0.048

Independent Events. Two events A and B are independent if and only if Pr[A ∩B] =
Pr[A]×Pr[B]. This definition also implies that if the conditional probability Pr[A|B] exists,
then A and B are independent events if and only if Pr[A|B] = Pr[A] .

Events A1, A2, . . . , An are mutually independent if ∀i, 1 ≤ i ≤ n Ai does not “depend” on
any combination of the other events. More formally, for every subset I ⊆ {1, 2, . . . , n},

Pr[∩i∈IAi] =
∏
i∈I

Pr[Ai]

In other words, to show that A1, A2, . . . , An are mutually independent we must show that
all of the following hold.

Pr[Ai ∩Aj ] = Pr[Ai] · Pr[Aj ] ∀ distinct i, j

Pr[Ai ∩Aj ∩Ak] = Pr[Ai] · Pr[Aj ] · Pr[Ak] ∀ distinct i, j, k

Pr[Ai ∩Aj ∩Ak ∩Al] = Pr[Ai] · Pr[Aj ] · Pr[Ak] · Pr[Al] ∀ distinct i, j, k, l

. . .

Pr[A1 ∩A2 ∩ · · · ∩An] = Pr[A1] Pr[A2] · · ·Pr[An]

The above definition implies that if A1, A2, . . . , An are mutually independent events then

Pr[A1 ∩A2 ∩ . . . ∩An] = Pr[A1]× Pr[A2]× · · · × Pr[An]

However, note that Pr[A1∩A2∩ . . .∩An] = Pr[A1]×Pr[A2]×· · ·×Pr[An] is not a sufficient
condition for A1, A2, . . . , An to be mutually independent.

Do not confuse the concept of disjoint events and independent events. If two events A
and B are disjoint and have a non-zero probability of happening then given that one event
happens reduces the chances of the other event happening to zero, i.e., Pr[A|B] = 0 6= Pr[A].
Thus by definition of independence, events A and B are not independent.

Example. Two cards are sequentially drawn (without replacement) from a well-shuffled
deck of 52 cards. Let A be the event that the two cards drawn have the same value (e.g.
both 4s) and let B be the event that the first card drawn is an ace. Are these events
independent?
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Solution. To decide whether the two events are independent we need to check whether
Pr[A ∩B] = Pr[A] Pr[B].

Pr[A] =
3

51
=

1

17

Pr[B] =
4

52
=

1

13

Pr[A ∩B] =
1

13
× 3

51

=
1

221

=
1

17
× 1

13
= Pr[A] Pr[B]

Example. Suppose that a fair coin is tossed twice. Let A be the event that a head is
obtained on the first toss, B be the event that a head is obtained on the second toss, and
C be the event that either two heads or two tails are obtained. (a) Are events A,B,C
pairwise independent? (b) Are they mutually independent?

Solution. Note that Ω = {HH,HT, TH, TT}. A = {HH,HT}, B = {HH,TH}, C =
{HH,TT}, A ∩ B = {HH}, A ∩ C = {HH}, B ∩ C = {HH}, A ∩ B ∩ C = {HH}. The
probabilities of the relevant events are as follows.

Pr[A] = 1/2

Pr[B] = 1/2

Pr[C] = 1/2

Pr[A ∩B] = 1/4 = Pr[A] Pr[B]

Pr[A ∩ C] = 1/4 = Pr[A] Pr[C]

Pr[B ∩ C] = 1/4 = Pr[B] Pr[C]

Pr[A ∩B ∩ C] = 1/4 6= Pr[A] Pr[B] Pr[C]

Thus we see that A,B,C are pairwise independent but not mutually independent.

Example. Consider the experiment in which we roll a dice twice. Consider the following
events.

A: event that the first roll results in a 1, 2, or a 3.
B: event that the first roll results in a 3, 4, or a 5.
C: event that the sum of the two rolls is a 9

Are events A, B, and C mutually independent?
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Solution. We show below that the events are not mutually independent as they are not
pairwise independent.

A = {(i, j) | 1 ≤ i ≤ 3 and 1 ≤ j ≤ 6}
B = {(i, j) | 3 ≤ i ≤ 5 and 1 ≤ j ≤ 6}
C = {(3, 6), (6, 3), (4, 5), (5, 4)}

A ∩B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}
A ∩ C = {(3, 6)}
B ∩ C = {(3, 6), (4, 5), (5, 4)}

A ∩B ∩ C = {(3, 6)}
Pr[A] = 1/2

Pr[B] = 1/2

Pr[C] = 1/9

Pr[A ∩B ∩ C] = 1/36 = Pr[A] · Pr[B] · Pr[C]

Pr[A ∩B] = 1/6 6= Pr[A] · Pr[B]

Pr[A ∩ C] = 1/36 6= Pr[A] · Pr[C]

Pr[B ∩ C] = 3/36 6= Pr[B] · Pr[C]

Random Variables

In an experiment we are often interested in some value associated with an outcome as
opposed to the actual outcome itself. For example, consider an experiment that involves
tossing a coin three times. We may not be interested in the actual head-tail sequence that
results but be more interested in the number of heads that occur. These quantities of in-
terest are called random variables.

Definition. A random variable X on a sample space Ω is a real-valued function that as-
signs to each sample point ω ∈ Ω a real number X(ω).

In this course we will study discrete random variables which are random variables that take
on only a finite or countably infinite number of values.

For a discrete random variable X and a real value a, the event “X=a” is the set of outcomes
in Ω for which the random variable assumes the value a, i.e., X = a ≡ {ω ∈ Ω|X(ω) = a}.
The probability of this event is denoted by

Pr[X = a] =
∑

ω∈Ω:X(ω)=a

Pr[ω]

Definition. The distribution or the probability mass function(PMF) of a random variable
X gives the probabilitites for the different possible values of X. Thus, if x is a value that
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X can assume then pX(x) is the probability mass of X and is given by

pX(x) = Pr[X = x]

Observe that
∑

x pX(x) =
∑

x Pr[X = x] = 1. This is because the events X = x are disjoint
and hence partition the sample space Ω.

Consider the experiment of tossing three fair coins. Let X be the random variable that
denotes the number of heads that result. The PMF or the distribution of X is given below.

pX(x) =

{
1/8 if x = 0 or x = 3
3/8 otherwise

The definition of independence that we developed for events extends to random variables.

Definition. Two random variables X and Y are independent if and only if

Pr[(X = x) ∩ (Y = y)] = Pr[X = x]× Pr[Y = y]

for all values x and y. In other words, two random variables X and Y are independent if
every event determined by X is independent of every event determined by Y .

Similarly, random variables X1, X2, . . . , Xk are mutually independent if and only if, for
any subset I ⊆ [1, k] and any values xi, i ∈ I,

Pr[∩i∈IXi = xi] =
∏
i∈I

Pr[Xi = xi]

Expectation

The PMF of a random variable, X, provides us with many numbers, the probabilities of
all possible values of X. It would be desirable to summarize this distribution into a repre-
sentative number that is also easy to compute. This is accomplished by the expectation of
a random variable which is the weighted average (proportional to the probabilities) of the
possible values of X.

Definition. The expectation of a discrete random variable X, denoted by E[X], is given
by

E[X] =
∑
i

ipX(i) =
∑
i

iPr[X = i]

Intuitively, E[X] is the value we would expect to obtain if we repeated a random experiment
several times and took the average of the outcomes of X.

In our running example, in expectation the number of heads is given by

E[X] = 0× 1

8
+ 3× 1

8
+ 1× 3

8
+ 2× 3

8
=

3

2

As seen from the example, the expectation of a random variable may not be a valid value
of the random variable.
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Example. When we roll a die what is the result in expectation?

Solution. Let X be the random variable that denotes the result of a single roll of dice.
The PMF for X is given by

pX(x) =
1

6
, x = 1, 2, 3, 4, 5, 6.

The expectation of X is given by

E[X] =

6∑
x=1

px(x) · x =
1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5

Example. When we roll two dice what is the expected value of the sum?

Solution. Let S be the random variable denoting the sum. The PMF for S is given by

pS(x) =



1
36 , x = 2, 12
2
36 , x = 3, 11
3
36 , x = 4, 10
4
36 , x = 5, 9
5
36 , x = 6, 8
6
36 , x = 7

The expectation of S is given by

E[S] =

12∑
x=2

pS(x) · x

=
1

36
× 2 +

2

36
× 3 +

3

36
× 4 +

4

36
× 4 +

5

36
× 6 +

6

36
× 7 +

5

36
× 8 +

4

36
× 9 +

3

36
× 10 +

2

36
× 11 +

1

36
× 12

=
252

36
= 7

Linearity of Expectation

One of the most important properties of expectation that simplifies its computation is the
linearity of expectation. By this property, the expectation of the sum of random variables
equals the sum of their expectations. This is given formally in the following theorem. I
didn’t cover the proof in the class but I am including it here for anyone who is interested.

Theorem. For any finite collection of random variables X1, X2, . . . , Xn,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi]
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Proof. We will prove the statement for two random variables X and Y . The general
claim can be proven using induction.

E[X + Y ] =
∑
i

∑
j

(i+ j) Pr[X = i ∩ Y = j]

=
∑
i

∑
j

(iPr[X = i ∩ Y = j] + j Pr[X = i ∩ Y = j])

=
∑
i

∑
j

iPr[X = i ∩ Y = j] +
∑
i

∑
j

j Pr[X = i ∩ Y = j]

=
∑
i

i
∑
j

Pr[X = i ∩ Y = j] +
∑
j

j
∑
i

Pr[X = i ∩ Y = j]

=
∑
i

iPr[X = i] +
∑
j

j Pr[Y = j]

= E[X] + E[Y ]

It is important to note that no assumptions have been made about the random variables
while proving the above theorem. For example, the random variables do not have to be
independent for linearity of expectation to be true.

Lemma. For any constant c and discrete random variable X,

E[cX] = cE[X]

Proof. The lemma clearly holds for c = 0. For c 6= 0

E[cX] =
∑
j

j Pr[cX = j]

= c
∑
j

(j/c) Pr[X = j/c]

= c
∑
k

kPr[X = k]

= cE[X]

Example. Using linearity of expectation calculate the expected value of the sum of the
numbers obtained when two dice are rolled.

Solution. Let X1 and X2 denote the random variables that denote the result when die
1 and die 2 are rolled respectively. We want to calculate E[X1 + X2]. By linearity of
expectation

E[X1 +X2] = E[X1] + E[X2]

=
1

6
(1 + 2 + 3 + 4 + 5 + 6) +

1

6
(1 + 2 + 3 + 4 + 5 + 6)

= 3.5 + 3.5

= 7
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Example. Suppose that n people leave their hats at the hat check. If the hats are
randomly returned what is the expected number of people that get their own hat back?

Solution. Let X be the random variable that denotes the number of people who get their
own hat back. Let Xi, 1 ≤ i ≤ n, be the random variable that is 1 if the ith person gets
his/her own hat back and 0 otherwise. Clearly,

X = X1 +X2 +X3 + . . .+Xn

By linearity of expectation we get

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

(n− 1)!

n!
= n× 1

n
= 1

Example. Suppose we throw n balls into n bins with the probability of a ball landing in
each of the n bins being equal. What is the expected number of empty bins?

Solution. First Approach: The following approach was discussed in class. Let X be the
random variable denoting the number of empty bins. For 0 ≤ i ≤ n, let Xi be a random
variable that is i if exactly i bins are empty and 0, otherwise. We have

X =
n∑
i=1

Xi

By the linearity of expectation, we have

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

iPr[Xi = i] =

n∑
i=1

iPr[X = i]

The last equality follows because exactly one of the Xis will be non-zero and if Xi 6= 0 then
X = Xi. Note that we have not made any progress as we are back to using the original
definition of expectation to solve the problem.

Second Approach: Let X be the random variable denoting the number of empty bins. Let
Xi be a random variable that is 1 if the ith bin is empty and is 0 otherwise. Clearly

X =
n∑
i=1

Xi
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By linearity of expectation, we have

E[X] =

n∑
i=1

E[Xi]

=

n∑
i=1

Pr[Xi = 1]

=

n∑
i=1

(
n− 1

n

)n
=

n∑
i=1

(
1− 1

n

)n
As n→∞, (1− 1

n)n → 1
e . Hence, for large enough values of n we have

E[X] =
n

e

Example. The following pseudo-code computes the minimum of n distinct numbers that
are stored in an array A. What is the expected number of times that the variable min is
assigned a value if the array A is a random permutation of the n elements.

FindMin(A,n):

min← A[1]
for i← 2 to n do

if (A[i] < min) then
min← A[i]

return min

Solution. Let X be the random variable denoting the number of times that min is as-
signed a value. We want to calculate E[X]. Let Xi be the random variable that is 1 if min
is assigned A[i] and 0 otherwise. Clearly,

X = X1 +X2 +X3 + · · ·+Xn

Using the linearity of expectation we get

E[X] =

n∑
i=1

E[Xi]

=

n∑
i=1

Pr[Xi = 1] (3)

Note that Pr[Xi = 1] is the probability that A[i] contains the smallest element among the
elements A[1], A[2], . . . , A[i]. Since the smallest of these elements is equally likely to be in
any of the first i locations, we have Pr[Xi = 1] = 1

i . Thus equation (3) becomes

E[X] =

n∑
i=1

1

i
= H(n) ≈ lnn+ c

where c is a constant less than 1.
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Example. Suppose there are k people in a room and n days in a year. On average how
many pairs of people share the same birthday?

Solution. Let X be the random variable denoting the number of pairs of people sharing
the same birthday. For any two people i and j, let Xij be an indicator random variable
that is 1 if i and j have the same birthday and is 0 otherwise. Clearly X =

∑
i,j Xij . Using

the linearity of expectation we get

E[X] =
∑
i,j

E[Xij ]

=
∑
i,j

Pr[Xij = 1]

=
∑
i,j

1

n

=

(
k
2

)
n

=
k(k − 1)

2n

Assuming n = 365, the smallest value of k for which the RHS is at least 1 is 28.

Example (Markov’s Inequality). Let X be a non-negative random variable. Then for
all a > 0, prove that

Pr[X ≥ a] ≤ E[X]

a

Solution. Intuitively, the claim means that if there is too much of probability mass as-
sociated with values above E[X] then the total contribution of such values to E[X] would
be very large. Formally, the proof is as follows.

E[X] =
∑
x

xPr[X = x]

≥
∑
x≥a

xPr[X = x]

≥ a
∑
x≥a

Pr[X = x]

= aPr[X ≥ a]

∴ Pr[X ≥ a] ≤ E[X]

a

Example. Suppose we flip a fair coin n times. Using Markov’s inequality bound the the
probability of obtaining at least 3n/4 heads.
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Solution. Let X be the random variable denoting the total number of heads in n flips of
a fair coin. We know that E[X] = n/2. Applying the above inequality we get

Pr[X ≥ 3n/4] ≤ E[X]

3n/4
=

n/2

3n/4
=

2

3

Example. Suppose we roll a die. Using Markov’s inequality bound the probability of
obtaining a number greater than or equal to 7.

Solution. Let X be the random variable denoting the result of the roll of a die. We know
that E[X] = 3.5. Using the Markov’s inequality we get

Pr[X ≥ 7] ≤ E[X]

7
≤ 1

2

As this result shows, Markov’s inequality gives a loose bound in some cases.

Variance

We are interested in calculating how much a random variable deviates from its mean.
This measure is called variance. Formally, for a random variable X we are interested in
E[X −E[X]]. By the linearity of expectation we have

E[X −E[X]] = E[X]−E[E[X]] = E[X]−E[X] = 0

Note that we have used the fact that E[X] is a constant and hence E[E[X]] = E[X]. This
is not very informative. While calculating the deviations from the mean we do not want
the positive and the negative deviations to cancel out each other. This suggests that we
should take the absolute value of X − E[X]. But working with absolute values is messy.
It turns out that squaring of X−E[X] is more useful. This leads to the following definition.

Definition. The variance of a random variable X is defined as

Var[X] = E[(X −E[X])2] = E[X2]− (E[X])2

The standard deviation of a random variable X is

σ[X] =
√

Var[X]

The standard deviation undoes the squaring in the variance. In doing the calculations it
does not matter whether we use variance or the standard deviation as we can easily com-
pute one from the other.

We show as follows that the two forms of variance in the definition are equivalent.

E[(X −E[X])2] = E[X2 − 2XE[X] + E[X]2]

= E[X2]− 2E[XE[X]] + E[X]2

= E[X2]− 2E[X]2 + E[X]2

= E[X2]−E[X]2

In step 2 we used the linearity of expectation and the fact that E[X] is a constant.
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Example. Consider three random variables X,Y, Z. Their probability mass distribution
is as follows.

Pr[X = x] =

{
1
2 , x = −2
1
2 , x = 2

Pr[Y = y] =


0.001, y = −10
0.998, y = 0
0.001, y = 10

Pr[Z = z] =


1
3 , z = −5
1
3 , z = 0
1
3 , z = 5

Which of the above random variables is more “spread out”?

Solution. It is easy to see that E[X] = E[Y ] = E[Z] = 0.

Var[X] = E[X2]

= 0.5 · (−2)2 + 0.5 · (2)2

= 4

Var[Y ] = E[Y 2]

= 0.001 · (−10)2 + 0.998 · 02 + 0.001 · (10)2

= 0.2

Var[Z] = E[Z2]

= (1/3) · (−5)2 + (1/3) · 02 + (1/3) · (5)2

= 16.67

Thus Z is the most spread out and Y is the most concentrated.

Example. In the experiment where we roll one die let X be the random variable denoting
the number that appears on the top face. What is Var[X]?

Solution. From the definition of variance, we have

Var[X] = E[X2]−E[X]2

=
1

6
(1 + 4 + 9 + 16 + 25 + 36) +

(
1

6
(1 + 2 + 3 + 4 + 5 + 6)

)2

=
91

6
− 49

4

=
35

12
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Example. In the hat-check problem that we did in one of the earlier lectures, what is the
variance of the random variable X that denotes the number of people who get their own
hat back?

Solution. We can express X as

X = X1 +X2 + · · ·+Xn

where Xi is the random variable that denotes that is 1 if the ith person receives his/her own
hat back and 0 otherwise. We already know from an earlier lecture that E[X] = 1. If n = 1
then E[X2] = E[X2

1 ] = Pr[X1 = 1] = 1. In this case, Var[X] = E[X2]−E[X]2 = 1− 1 = 0,
as expected. If n ≥ 2, E[X2] can be calculated as follows.

E[X2] =
n∑
i=1

E[X2
i ] + 2

∑
i<j

E[Xi ·Xj ]

=
n∑
i=1

E[X2
i ] + 2

∑
i<j

1 · Pr[Xi = 1 ∩Xj = 1]

=

n∑
i=1

1

n
+ 2

(
n(n− 1)

2

)(
1

n(n− 1)

)
= n · 1

n
+ 1

= 2

Var[X] is given by

Var[X] = E[X2]−E[X]2 = 2− 1 = 1

Note that like the expectation, the variance is independent of n. This means that it is not
likely for many people to get their own hat back even if n is large.

Example (Chebyshev’s Inequality). Let X be a random variable. Show that for any
a > 0,

Pr[|X −E[X]| ≥ a] ≤ Var[X]

a2

Solution. The inequality that we proved in the earlier homework is called Markov’s in-
equality. We will use it to prove the above tail bound called Chebyshev’s inequality.

Pr[|X −E[X]| ≥ a] = Pr[(X −E[X])2 ≥ a2]

≤ E[(X −E[X])2]

a2
(using Markov’s Inequality)

=
Var[X]

a2
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Theorem. If X and Y are independent real-valued random variables then

Var[X + Y ] = Var[X] + Var[Y ] and E[X · Y ] = E[X] ·E[Y ]

The result can be extended to a finite number of random variables.

Note that the converse of the above statement is not true as illustrated by the following
example. Let Ω = {a, b, c}, with all three outcomes equally likely. Let X and Y be
random variables defined as follows: X(a) = 1, X(b) = 0, X(c) = −1 and Y (a) = 0, Y (b) =
1, Y (c) = 0. Note that X and Y are not independent since

Pr[X = 0 ∧ Y = 0] = 0, but Pr[X = 0] · Pr[Y = 0] =
1

3
· 2

3
=

2

9
6= 0.

Note that for all ω ∈ Ω, X(ω)Y (ω) = 0. Also, E[X] = 0 and E[Y ] = 1/3. Thus we have

E[XY ] = 0 = E[X]E[Y ]

It is also easy to verify that Var[X + Y ] = Var[X] + Var[Y ].

Example (Chebyshev’s Inequality). Let X be a random variable. Show that for any
a > 0,

Pr[|X −E[X]| ≥ a] ≤ Var[X]

a2

Solution. The inequality that we proved in the earlier homework is called Markov’s in-
equality. We will use it to prove the above tail bound called Chebyshev’s inequality.

Pr[|X −E[X]| ≥ a] = Pr[(X −E[X])2 ≥ a2]

≤ E[(X −E[X])2]

a2
(using Markov’s Inequality)

=
Var[X]

a2

Example. Use Chebyshev’s inequality to bound the probability of obtaining at least 3n/4
heads in a sequence of n fair coin flips.

Solution. Let X denote the random variable denoting the total number of heads that
result in n flips of a fair coin. For 1 ≤ i ≤ n, let Xi be a random variable that is 1, if the
ith flip results in Heads, 0, otherwise. Thus,

X = X1 +X2 + · · ·+Xn

By the linearity of expectation, E[X] = n/2. Since the random variables Xis are indepen-
dent, we have

Var[X] =
n∑
i=1

Var[Xi] =
n∑
i=1

(1/2− 1/4) =
n

4
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Using Chebyshev’s inequality, we get

Pr[X ≥ 3n/4] = Pr[X − n/2 ≥ n/4]

= Pr[X −E[X] ≥ n/4]

=
1

2
· Pr[|X −E[X]| ≥ n/4]

≤ 1

2
· Var[X]

n2/16

=
2

n

Probability Distributions

Tossing a coin is an experiment with exactly two outcomes: heads (“success”) with a
probability of, say p, and tails (“failure”) with a probability of 1− p. Such an experiment
is called a Bernoulli trial. Let Y be a random variable that is 1 if the experiment succeeds
and is 0 otherwise. Y is called a Bernoulli or an indicator random variable. For such a
variable we have

E[Y ] = p · 1 + (1− p) · 0 = p = Pr[Y = 1]

Thus for a fair coin if we consider heads as ”success” then the expected value of the corre-
sponding indicator random variable is 1/2.

A sequence of Bernoulli trials means that the trials are independent and each has a prob-
ability p of success. We will study two important distributions that arise from Bernoulli
trials: the geometric distribution and the binomial distribution.

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p
that we flip repeatedly until it lands on heads. What is the distribution of the number
of flips? This is an example of a geometric distribution. It arises in situations where we
perform a sequence of independent trials until the first success where each trial succeeds
with a probability p.

Note that the sample space Ω consists of all sequences that end in H and have exactly one
H. That is

Ω = {H,TH, TTH, TTTH, TTTTH, . . .}

For any ω ∈ Ω of length i, Pr[ω] = (1− p)i−1p.

Definition. A geometric random variable X with parameter p is given by the following
distribution for i = 1, 2, . . . :

Pr[X = i] = (1− p)i−1p
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We can verify that the geometric random variable admits a valid probability distribution
as follows:

∞∑
i=1

(1− p)i−1p = p

∞∑
i=1

(1− p)i−1 =
p

1− p

∞∑
i=1

(1− p)i =
p

1− p
· 1− p

1− (1− p)
= 1

Note that to obtain the second-last term we have used the fact that
∑∞

i=1 c
i = c

1−c , |c| < 1.

Let’s now calculate the expectation of a geometric random variable, X. We can do this in
several ways. One way is to use the definition of expectation.

E[X] =
∞∑
i=0

iPr[X = i]

=
∞∑
i=0

i(1− p)i−1p

=
p

1− p

∞∑
i=0

i(1− p)i

=

(
p

1− p

)(
1− p

(1− (1− p))2

) (
∵
∞∑
i=0

kxk =
x

(1− x)2
, for |x| < 1.

)

=

(
p

1− p

)(
1− p
p2

)
=

1

p

Another way to compute the expectation is to note that X is a random variable that takes
on non-negative values. From a theorem proved in last class we know that if X takes on
only non-negative values then

E[X] =

∞∑
i=1

Pr[X ≥ i]

Using this result we can calculate the expectation of the geometric random variable X. For
the geometric random variable X with parameter p,

Pr[X ≥ i] =
∞∑
j=i

(1−p)j−1p = (1−p)i−1p
∞∑
j=0

(1−p)j = (1−p)i−1p× 1

1− (1− p)
= (1−p)i−1

Therefore

E[X] =

∞∑
i=1

Pr[X ≥ i] =

∞∑
i=1

(1− p)i−1 =
1

1− p

∞∑
i=1

(1− p)i =
1

1− p
· 1− p

1− (1− p)
=

1

p

Memoryless Property. For a geometric random variable X with parameter p and for
n > 0,

Pr[X = n+ k |X > k] = Pr[X = n]
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Conditional Expectation. The following is the definition of conditional expectation.

E[Y |Z = z] =
∑
y

yPr[Y = y |Z = z],

where the summation is over all possible values y that the random variable Y can assume.

Example. For any random variables X and Y ,

E[X] =
∑
y

Pr[Y = y]E[X |Y = y]

We can also calculate the expectation of a geometric random variable X using the
memoryless property of the geometric random variable. Let Y be a random variable that
is 0, if the first flip results in tails and that is 1, if the first flip is a heads. Using conditional
expectation we have

E[X] = Pr[Y = 0]E[X|Y = 0] + Pr[Y = 1]E[X|Y = 1]

= (1− p)(E[X] + 1) + p · 1 (using the memoryless property)

∴ pE[X] = 1

E[X] =
1

p

Binomial Distributions

Consider an experiment in which we perform a sequence of n coin flips in which the prob-
ability of obtaining heads is p. How many flips result in heads?

If X denotes the number of heads that appear then

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

Definition. A binomial random variable X with parameters n and p is defined by the
following probability distribution on j = 0, 1, 2, . . . , n:

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

We can verify that the above is a valid probability distribution using the binomial theorem
as follows

n∑
j=1

(
n

j

)
pj(1− p)n−j = (p+ (1− p))n = 1
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What is the expectation of a binomial random variable X? We can calculate E[X] is two
ways. We first calculate it directly from the definition.

E[X] =

n∑
j=0

j

(
n

j

)
pj(1− p)n−j

=

n∑
j=0

j
n!

j!(n− j)!
pj(1− p)n−j

=
n∑
j=1

j
n!

j!(n− j)!
pj(1− p)n−j

=

n∑
j=1

n!

(j − 1)!(n− j)!
pj(1− p)n−j

= np
n∑
j=1

(n− 1)!

(j − 1)!((n− 1)− (j − 1))!
pj−1(1− p)(n−1)−(j−1)

= np

n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk(1− p)(n−1)−k

= np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)(n−1)−k

= np

The last equation follows from the binomial expansion of (p+ (1− p))n−1.

We can obtain the result in a much simpler way by using the linearity of expectation. Let
Xi, 1 ≤ i ≤ n be the indicator random variable that is 1 if the ith flip results in heads and
is 0 otherwise. We have X =

∑n
i=1Xi. By the lineartity of expectation we have

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

p = np

What is the variance of the binomial random variable X? Since X =
∑n

i=1Xi, and
X1, X2, . . . , Xn are independent we have

Var[X] =

n∑
i=1

Var[Xi]

=

n∑
i=1

E[X2
i ]−E[Xi]

2

=

n∑
i=1

(p− p2)

= np(1− p)
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Coupon Collector’s Problem.

We are trying to collect n different coupons that can be obtained by buying cereal boxes.
The objective is to collect at least one coupon of each of the n types. Assume that each
cereal box contains exactly one coupon and any of the n coupons is equally likely to occur.
How many cereal boxes do we expect to buy to collect at least one coupon of each type?

Solution. Let the random variable X denote the number of cereal boxes bought until we
have at least one coupon of each type. We want to compute E[X]. Let Xi be the random
variable denoting the number of boxes bought to get the ith new coupon. Clearly,

X = X1 +X2 +X3 + . . .+Xn

Using the linearity of expectation we have

E[X] = E[X1] + E[X2] + E[X3] + . . .+ E[Xn] (4)

What is the distribution of random variable Xi? Observe that the probability of obtaining
the ith new coupon is given by

pi =
n− (i− 1)

n
=
n− i+ 1

n

Thus the random variable Xi, 1 ≤ i ≤ n is a geometric random variable with parameter pi.

E[Xi] =
1

pi
=

n

n− i+ 1

Combining this with equation (4) we get

E[X] =
n

n
+

n

n− 1
+

n

n− 2
+ · · ·+ n

2
+
n

1
= n

n∑
i=1

1

i

The summation
∑n

i−1
1
i is known as the harmonic number H(n) and H(n) = lnn + c, for

some constant c < 1.

Hence the expected number of boxes needed to collect n coupons is about nH(n) < n(lnn+
1).

The Probabilistic Method

A tournament graph is a directed graph with exactly one directed edge between any pair of
vertices. Every tournament graph has at least one Hamiltonian path, a path that visits each
vertex exactly once (can be proved using induction). In 1943, Szele used the Probabilistic
Method to show the existence of a tournament graph with a large number of Hamiltonian
paths. Note that there are tournaments in which there is exactly one Hamiltonian path.
For example, the tournament on vertices {1, 2, . . . , n} in which there is a directed edge (i, j)
iff i < j has exactly one Hamiltonian path.
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Example. Prove that there is a n-vertex tournament with at least n!
2n−1 distinct Hamil-

tonian paths.

Solution. Let G = (n, 1/2) be a n-vertex tournament graph, in which an edge between
any two vertices u and v is directed towards u with probability 1

2 and towards v with
probability 1

2 . Let X denote the total number of Hamiltonian paths in G and let Xσ be
an indicator random variable that is 1, iff a permutation σ of the vertices in G yields a
Hamiltonian path. Clearly, X =

∑
σXσ. Applying the Linearity of Expectation, we get

E[X] =
∑
σ

E[Xσ]

=
∑
σ

Pr[Xσ = 1]

=
∑
σ

(
1

2

)n−1

=
n!

2n−1

Since a random orientation of the edges, i.e., a random tournament, yields us the above
number in expectation, there must be an orientation of the edges, i.e., a tournament, in
which the number of Hamiltonian paths is at least n!/2n−1.

An independent set S in G is a subset of vertices such that no two vertices in S share
an edge. The independence number of a graph G, denoted by α(G) is the size of the largest
independent set in G.

Example. Let n be the number of vertices in G and m be the number of edges, and let
d = 2m

n ≥ 1 be the average degree. Then

α(G) ≥ n

2d

This is a weaker version of the celebrated Turán’s theorem.

Solution. Construct a random subset S of vertices by placing each vertex in S indepen-
dently with probability p (to be determined later). Let X be the random variable denoting
the number of vertices in S and let Y be the random variable denoting the number of edges
whose both endpoints are in S. Let Ye be an indicator random variable that is 1 iff both
endpoints of e are in S. By the Linearity of Expectation we have

E[X] = np and E[Y ] =
∑
e

E[Ye] =
∑
e

Pr[Ye = 1] = mp2 =
nd

2
p2

Note that the quantity X − Y denotes the number of vertices in S minus the number of
edges with both endpoints in S. By the Linearity of Expectation we get

E[X − Y ] = np− nd

2
p2 = np

(
1− dp

2

)
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This means that there exists a set S such that the number of vertices in S exceeds the
number of edges in S by the above quantity. We now modify set S by deleting an arbitrary

endpoint of each edge. The resulting set S′ has at least np
(

1− dp
2

)
vertices left and has

no edges between any of its vertices. We want to maximize |S′|, so we set p = 1/d (using
d ≥ 1), giving us |S′| = n

2d .

For any graph G = (V,E), a set of vertices D ⊆ V is called a dominating set if every
vertex in V \D is adjacent to a vertex in D.

Example. Prove that any connected graph G = (V,E) with n ≥ 2 vertices and minimum

degree δ(G) = δ, contains a dominating set of size at most n(1+log(1+δ))
1+δ .

Solution. For each vertex v ∈ V , add it to the set X independently with probability p.
Let Y ⊆ V \X be the vertices that are not dominated by X, i.e., they are vertices in V \X
that are not dominated by X. Then X ∪ Y is a dominating set for G. We will now show
that E[X ∪ Y ] is not too large. Since X and Y are disjoint sets, we have

E[X ∪ Y ] = E[X] + E[Y ] (5)

We consider the following random variables.
Xv: random variable that is 1 if vertex v is in X, 0, otherwise.
Yv: random variable that is 1 if vertex v and all of its neighbors are not in X, 0, otherwise.

X =
∑
v

Xv

∴ E[X] =
∑
v

Pr[Xv = 1]

= np

Y =
∑
v

Yv

∴ E[Y ] =
∑
v

Pr[Yv = 1]

=
∑
v

(1− p)deg(v)+1

≤
∑
v

(1− p)δ+1

= n(1− p)δ+1

Plugging the values of E[X] and E[Y ] in (5) we get

E[X ∪ Y ] ≤ np+ n(1− p)δ+1 ≤ np+ ne−p(δ+1),

The last expression is minimized when

p =
ln(1 + δ)

1 + δ
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Thus, we can find a dominating set of size at most n(1+ln(1+δ))
1+δ .

Recall that a tournament is a directed graph with exactly one directed edge between any
pair of vertices. A tournament G = (V,E) is called k-dominated if for every set of k vertices
v1, v2, . . . , vk, there exists another vertex u ∈ V such that (u, vi) ∈ E, for i = 1, 2, . . . , k.

Example. Prove that for any positive integer k, if n is large enough then there is a
k-dominated tournament on n vertices.

Solution. Construct a random tournament G in which an edge between any two vertices
u and v is directed towards u with probability 1

2 and towards v with probability 1
2 . The bad

event for our random process is that G is not k-dominated. We will calculate the probability
of this bad event as follows. Let S be a fixed set of k vertices in G. The probability that a
vertex u outside of S does not dominate set S is given by 1− (1/2)k. Thus the probability
that S is not dominated by any of the n− k vertices outside of S is given by (1− 1/2k)n−k.
Since there are

(
n
k

)
possibilities for set S, the probability of some set of k vertices in G not

being dominated is at most (
n

k

)(
1− 1

2k

)n−k
(6)

If the above expression is less than 1, it means that the probability of the random tourna-
ment G being k-dominated is strictly larger than 0, which means that such a tournament
exists. We will now show that if n/ lnn > k2k then the expression (6) is less than 1.(

n

k

)(
1− 1

2k

)n−k
≤ nk

k!
· e

k−n
2k (using 1 + x ≤ ex, ∀x ∈ R)

=
ek lnn

k!
· e

k

2k
− n

2k (since n = elnn)

=
e
k

2k

k!
· ek lnn− n

2k

≤ e

k!
· 1

e
(since n/ lnn > k2k)

=
1

k!
< 1

Note that for large values of k, n > k22k satisfies the inequality n/ lnn > k2k. This is
because when n = k22k, we have

n

lnn
=

k22k

ln(k22k)

Note that for the last term to be larger than k2k, it must be that

ln(k22k) < k ⇒ k22k < ek ⇒ k2 <
(e

2

)k
which is true for sufficiently large values of k.
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The Ramsey number R(k, l) is the smallest number n such that any graph with n vertices
has clique of size k or an independent set of size l. Another way to formulate this is: in
any two-coloring on edges of the complete graph on n vertices, there is a monochromatic
clique of size k or a monochromatic clique of size l. Diagonal Ramsey Number asks for the
value of R(k, k) for any integer k. Finding a diagonal Ramsey number even for k = 6 is
very difficult. We want to find a lower bound on R(k, k).

Example. If
(
n
k

)
21−(k2) < 1, then R(k, k) > n. In particular, R(k, k) > b2

k
2 c, for k ≥ 3.

Solution. Consider a complete graph G in which each edge is colored red or blue with a
probability of 1/2. Let S be a any subset of k vertices and E(S) be the set of edges with
both endpoints in S.

Pr[edges in E(S) are monochromatic] = 2 · 2−(k2)

Since there are
(
n
k

)
subsets of size k, the probability that some subset of size k is monochro-

matic is at most

2

(
n

k

)
2−(k2) =

(
n

k

)
21−(k2) (7)

Since the last expression is less than 1 (given as a condition in the problem statement), there
is a 2-coloring of edges of a complete graph on n vertices in which there is no monochromatic
clique of size k. Thus R(k, k) > n.

If n = b2k/2c then

(
n

k

)
21−(k2) ≤ nk

k!
· 21− k(k−1)

2 ≤

(
2k

2/2

k!

)
21− k

2

2
+ k

2 =
21+ k

2

k!

Note that the last expression is less than 1, if k ≥ 3.

It can be shown that R(k, k) < 4k. These are the best known bounds on the size of R(k, k),
so a lot of progress is yet to be made. What is known is that R(2, 2) = 2, R(3, 3) = 6, and
R(4, 4) = 18. The values of R(k, k) are not known for k ≥ 5.

A fundamental question in graph coloring is: what is the relation between χ(G) and the
size of the largest clique? We state without proof that simply bounding the size of the
largest clique does not allow us to bound χ(G).

Example. For any k ≥ 1, there exist triangle-free graphs (size of the largest clique is at
most 2) with chromatic number greater than k.
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Solution. Let G = (n, p) be a n-vertex graph, in which an edge between any two vertices
is included with a probability of p.

Note that if χ(G) = k then there must be an independent set in G of size dn/ke. Thus, to
show that χ(G) ≥ k, it suffices to show that the largest independent set in G is at most
dn/ke. We will show that with a high probability, for a suitable value of p, G does not have
an independent set of size dn/2ke.

Let I be the random variable denoting the number of independent sets of size dn/2ke in G.
For any set S consisting of dn/2ke vertices, let IS be an indicator random variable that is
1, iff S is an independent set. Thus we have

E[IS ] = Pr[IS = 1]

= (1− p)(
dn/2ke

2 )

≤ (1− p)(
n/2k

2 )

= (1− p)
(n/2k)(n/2k−1)

2

= e−p(
n2

8k2
− n

4k
)(using 1 + x ≤ ex, for all x)

≤ e−p(
n2

16k2
) (for n ≥ 4k)

< 2−
n1+ε

16k2 (8)

The expected value of I can now be calculated as follows.

I =
∑
S

IS

E[I] =
∑
S

E[IS ]

<
∑
S

2−
n1+ε

16k2 (using (8))

=

(
n

dn/2ke

)
2−

n1+ε

16k2

< 2n × 2−
n1+ε

16k2

= 2n(1− nε

16k2
)
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We want E[I] ≤ 1/2. For this to happen, it suffices that

n(1− nε

16k2
) ≤ −1,which holds if

n− n1+ε

16k2
≤ −1,which holds if

n+ 1 ≤ n1+ε

16k2
,which holds if

2n ≤ n1+ε

16k2
,which holds if

n ≤ n1+ε

32k2
,which holds if

nε ≥ 32k2,which holds if

n ≥ (32k2)1/ε (9)

Thus, we have that for all n ≥ (32k2)
1
ε , E[I] < 1/2. By Markov’s inequality, we have

Pr[I ≥ 1] ≤ E[I] <
1

2

Let T be the random variable denoting the number of triangles. Fix a set of 3 vertices; the
probability that they form a triangle is p3. Summing this over all 3-subsets, we get

E[T ] =

(
n

3

)
p3

<
n3

3!
(nε−1)3

=
n3ε

6

Using Markov’s inequality, we have

Pr[T ≥ n/2] ≤ E[T ]

n/2
<
n3ε/6

n/2
=

1

3n1−3ε

Setting the last expression to be at most 1/3, we have

1

3n1−3ε
≤ 1/3

ε ≤ 1/3

By plugging ε = 1/3 in (9), we get n ≥ 215k6. Thus, we have that for all n ≥ 215k6, we
have Pr[I ≥ 1] + Pr[T ≥ n/2] < 1. This means that there exists a graph G for which I = 0
and T < n/2. We now alter this graph G by deleting one vertex from each triangle in G.
Let G′ be the resulting triangle-free graph. We remove less than n/2 vertices from G, thus
G′ has at least n/2 vertices. Since G does not have an independent set of size dn/2ke, G′
does not have an independent set of size dn/2ke ≤ d|G′|/ke. Thus χ(G′) > k.

The girth of a graph G, g(G), is the length of the smallest cycle in G. In triangle-free
graphs, g(G) > 3. In 1954 B. Descartes constructively showed that triangle-free graphs can
have high chromatic number, but this construction was complicated and contained many
short cycles. In 1959, Paul Erdős used the probabilistic method to prove the existence of
graphs with arbitrarily high girth and chromatic number.
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Example (Erdős 1959) For every g, k > 0, there exists a graph G with χ(G) ≥ k and
g(G) ≥ g.
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Proofs

Introduction to Logic

A proposition is a statement that is either true or false. For example, “2 + 2 = 4” and
“Donald Knuth is a faculty at Rutgers-Camden” are propositions, whereas “What time is
it?”, x2 < x+ 40 are not propositions.

We can construct compound propositions from simpler propositions by using some of the
following connectives. Let p and q be arbitrary propositions.

Negation: p̃ (read as “not p”) is the proposition that is true when p is false and vice-versa.

Conjunction: p ∧ q (read as “p and q”) is the proposition that is true when both p and q
are true.

Disjunction: p ∨ q (read as “p or q”) is the proposition that is true when at least one of
p or q is true.

Exclusive Or: p ⊕ q (read as “p exclusive-or q”) is the proposition that is true when
exactly one of p and q is true is false otherwise.

Implication: p→ q (read as “p implies q”) is the proposition that is false when p is true
and q is false and is true otherwise.

The implication q → p is called the converse of the implication p → q. The implication
¬p → ¬q is called the inverse of p → q. The implication ¬q → ¬p is the contrapositive of
p→ q. p only if q means “if not q then not p”, or equivalently if p then q.

Biconditional: p↔ q (read as “p if, and only if, q”) is the proposition that is true if p and q
have the same truth values and is false otherwise. “If and only if” is often abbreviated as iff.

The following truth table makes the above definitions precise.

p q ¬p p ∧ q p ∨ q p⊕ q p→ q q → p p↔ q

T T F T T F T T T

T F F F T T F T F

F T T F T T T F F

F F T F F F T T T

Necessary and Sufficient Conditions: For propositions p and q,

p is a sufficient condition for q means that p→ q.
p is a necessary condition for q means that ¬p → ¬q, or equivalently q → p.
Why is p ∧ q not the correct answer?
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Thus p is a necessary and sufficient condition for q means “p iff q”.

Logical Equivalence

Two compound propositions are logically equivalent if they always have the same truth
value. Two statement p and q can be proved to be logically equivalent either with the aid
of truth tables or using a sequence of previously derived logically equivalent statements.

Example. Show that p→ q ≡ ¬p ∨ q ≡ ¬q → ¬p.

Solution. The truth table below proves the above equivalence.

p q ¬p ¬q p→ q ¬p ∨ q ¬q → ¬p
T T F F T T T

T F F T F F F

F T T F T T T

F F T T T T T

Example. Show that p ≡ ¬p→ C and p→ q ≡ (p ∧ ¬q)→ C.

p q ¬p ¬q p→ q p ∧ ¬q C ¬p→ C (p ∧ ¬q)→ C

T T F F T F F T T

T F F T F T F T F

F T T F T F F F T

F F T T T F F F T

The above equivalence forms the basis of proofs by contradiction.

The logic of Quantified Statements

Consider the statement x < 15. We can denote such a statement by P (x), where P denotes
the predicate “is less than 15” and x is the variable. This statement P (x) becomes a
proposition when x is assigned a value. In the above example, P (8) is true while P (18) is
false.

Another way to convert the statement P (x) into a proposition is through quantifica-
tion. The two types of quantification that we will study are universal quantification and
existential quantification. Using universal quantifier ∀ (“for all”) alongside P (x) means
that the statement P (x) is true for all elements in the domain of x. Thus the proposition
∀x ∈ D,P (x) is true when P (x) is true for all x ∈ D and is false if there is an element
x′ ∈ D for which P (x′) is false. Using existential quantifier ∃ (“there exists”) alongside
P (x) means that there exists an element in the domain of x for which P (x) is true. Thus
the proposition ∃x ∈ D,P (x) is true if there is an x′ ∈ D for which P (x′) is true and is
false if P (x) is false for all x ∈ D.

Examples of propositions using quatifiers are as follows.
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1. ∀x ∈ Z, x3 + 1 is composite.
2. ∀x ∈ Z, x is even → x+ 1 is odd.
3. ∃x ∈ N, x2 6> x.
4. ∃x ∈ Z, 2|x and 2|x+ 1.
5. ∀x ∈ Z∃y ∈ Z, x+ y = 0.
6. ∃x ∈ Z∀y ∈ Z, x > y.

Sometimes it helps (in proofs) to consider the negation of a proposition. Verify the following
equivalence.

¬(∀x ∈ D,P (x)) ≡ ∃x ∈ D,¬P (x)

¬(∃x ∈ D,P (x)) ≡ ∀x ∈ D,¬P (x)

Proofs

We will illustrate some proof techniques by proving some properties about numbers. Before
we do that let’s go through some basic definitions given below.

An integer n is even iff n = 2k for some integer k. An integer is odd iff n = 2k+ 1 for some
integer k. Symbolically,

n is even ↔ ∃ an integer k s.t. n = 2k

n is odd ↔ ∃ an integer k s.t. n = 2k + 1

An integer n is prime iff n > 1 and for all positive integers r and s, if n = r · s, then r = 1
or s = 1. Otherwise n is composite.

Given any real number x, the floor of x, denoted by bxc, is defined as follows

bxc = n↔ n ≤ x < n+ 1, where n is an integer

Given any real number x, the ceiling of x, denoted by dxe, is defined as follows

dxe = n↔ n− 1 < x ≤ n, where n is an integer

A real number is rational iff it can be expressed as a ratio of two integers with a non-zero
denominator. A real number that is not rational is irrational. More formally,

r is rational↔ ∃ integers a and b such that r = a/b and b 6= 0.

Example. Prove the following: If the sum of two integers is even then so is their difference.
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Solution. Let m and n be particular but arbitrarily chosen integers such that m + n is
even. By definition of even, we have m+ n = 2k, for some integer k. Then

m = 2k − n

Now m− n can be written as follows.

m− n = 2k − n− n
= 2(k − n)

Since k and n are integers, k − n is an integer, 2(k − n) is even and hence m− n is even.

Example. Prove that, for all integers n, if n is odd then n2 + n+ 1 is odd.

Solution. Since n is odd n = 2k + 1 for some integer k. Then,

n2 + n+ 1 = (2k + 1)2 + 2k + 1 + 1

= 4k2 + 4k + 1 + 2k + 2

= 4k2 + 6k + 2 + 1

= 2(2k2 + 3k + 1) + 1

Since k is an integer, p = 2k2+3k+1 is an integer and n2+n+1 is odd, since n2+n+1 = 2p+1
where p is an integer.

Example. Let x be an integer. If x > 1, then x3 + 1 is composite.

Solution. Let x be an arbitrary but specific integer such that x > 1. We can rewrite
x3 + 1 as (x+ 1)(x2 − x+ 1). Note that since x is an integer both (x+ 1) and (x2 − x+ 1)
are integers. Hence (x + 1)|x3 + 1 and (x2 − x + 1)|x3 + 1. We now need to show that
x + 1 > 1 and x2 − x + 1 > 1. Since x > 1, clearly, x + 1 > 1. x2 − x + 1 > 1 by the
following reasoning.

x > 1

x2 > x (Multiplying both sides by x.)

x2 − x > 0 (Subtracting both sides by x.)

x2 − x+ 1 > 1 (Adding 1 to both sides.)

We can also argue that x2−x+ 1 > 1 by showing that x+ 1 < x3 + 1. Since x > 1 we have
x2 > x and hence x2 > 1. Multiplying both sides by x again we get x3 > x. This means
that x+ 1 < x3 + 1 and since (x+ 1)|x3 + 1, we conclude that x3 + 1 is composite.

Note: One student asked the question that why can’t we write x3 + 1 as x3(1 + 1
x3

). The
reason is that for an integer x > 1, (1 + 1

x3
) is not an integer and the proof breaks down.
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Example. Prove that, for all real numbers x and all integers m,

bx+mc = bxc+m

Solution. Let x = y+ε, where y is the largest integer with value at most x and 0 ≤ ε < 1.
Then,

x+m = y + ε+m

bx+mc = by +m+ εc
= y +m

= bxc+m

Example. Prove that if x and y are integers where x+ y is even, then x and y are both
odd or both even.

Solution. To prove the above claim we will prove its contrapositive which is “if exactly
one of x or y is even then x+ y is odd”. Without loss of generality, for some integers k and
l, let x = 2k be even and y = 2l + 1 be odd. Then,

x+ y = 2k + 2l + 1

= 2(k + l) + 1

Since k and l are integers so is k + l and 2(k + l) is even and hence x+ y is odd.

Example. Show that at least three of any 25 days chosen must fall in the same month of
the year.

Solution. Assume for contradiction that the proposition “at least three of any 25 days
chosen must fall in the same month of the year” is not true. This means that each month
can have at most two of the 25 days chosen. Since there are 12 months, there can be at
most 24 days that must have been chosen. This contradicts the premise that we chosen
25 days. In other words, by assuming that the proposition in the question is false, we
have proved that (25 days are chosen) and (at most 24 days are chosen), which is clearly a
contradiction.

Example. If 3n+ 2 is odd then n is odd.
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Solution. We will show the above claim is true by giving a proof by contradiction. Thus
assume that 3n + 2 is odd and n is even. Since n is even, there exists an integer k such
that n = 2k. Thus 3n+ 2 can be written as

3(2k) + 2 = 2(3k + 1)

Since k is an integer, clearly 3k+1 is an integer. Thus 3n+2 is even. Note that our premise
is that 3n+ 2 is odd and we have shown that 3n+ 2 is even. This is a contradiction. This
proves the claim.

Example. Prove that for all real numbers a and b, if the product ab is an irrational
number, then either a or b, or both must be irrational.

Solution. We will prove the above claim by proving the contrapositive. That is, we will
show that if both a and b are rational numbers then their product ab is a rational number.
Let a = p/q and b = r/s, where p, q, r, and s are integers and q 6= 0 and s 6= 0. The product
ab can be expressed as follows.

ab =
p

q
· r
s

=
pr

qs

Note that the numerator pr is an integer and so is the denominator qs. Also, since q 6= 0
and s 6= 0, the denominator qs 6= 0. Thus ab is a rational number.

A Brief Detour: Set Operations.

We will make a small detour to understand operations on sets. Below are some definitions.

• Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set
that contains those elements that are either in A or in B, or in both. As an example,
if A = {Ron, Bob, Kelly} and B = {Tim, Ryan, Bob} then A ∪ B = {Ron, Bob,
Kelly, Tim, Ryan}.

• Let A and B be sets. The intersection of the sets A and B, denoted by A∩B, is the
set that contains those elements that are in both A and B. For example, if A = {Ron,
Bob, Kelly} and B = {Tim, Ryan, Bob} then A ∩B = {Bob}.

• Two sets are called disjoint if their intersection is an empty set.

• A collection of nonempty sets {A1, A2, . . . , An} is a partition of a set A if, and only
if, (i) A =

⋃n
i=1Ai and (ii) A1, A2, . . . , An are mutually (pairwise) disjoint.

• Let A and B be two sets. The difference of A and B, denoted by A \ B (or A − B)
is the set containing those elements that are in A but not in B. For example, if
A = {1, 2, 3, 4} and B = {2, 3, 4, 6, 8} then A \B = {1}.
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• The complement of a set A is the set of elements not in A. It is denoted by A. Thus,
if U is the universe of elements in consideration, then the complement of set A is
given by

A = U \A

As an example, if U = N and A is the set of non-negative even integers, then A is the
set of all positive odd integers.

• Let A and B be sets. The cartesian product of A and B, denoted by A × B, is the
set of all ordered pairs formed by taking an element from A together with an element
from B in all possible ways. That is, A×B = {(a, b) | a ∈ A, b ∈ B}.

Example. Let A = {21, 22, 23, . . .} and B = {2, 4, 6, . . .}. Prove that A ⊆ B.

Solution. Let x be an arbitrary but particular element in A. Element x is of the form
2j , for some positive integer j. Note that an element in B is of the form 2 · i, for some
i ∈ {1, 2, 3, . . .}. Clearly, x = 2j = 2 · i, where i = 2j−1. Since j is positive, j − 1 ≥ 0 and
hence i ≥ 1. Thus x ∈ B and hence we conclude that A ⊆ B.

Example. Let A and B be sets. Then, A = B if and only if A ⊆ B and B ⊆ A.

Solution. (⇒): If A = B then since every set is a subset of itself, we have A ⊆ B and
B ⊆ A.
(⇐): Let x be any element in A. Since A ⊆ B, x is also an element in B. Similarly, if an
element y ∈ B, since B ⊆ A, y is also an element in A. Thus there is no element in A that
is not in B and there is no element in B that is not in A, that is, A and B have the same
elements. By definition, A = B.

Example. Let A = {n |n = 2k+ 5 for some k ∈ N} and B = {n |n = 2j+ 1 for some j ∈
N}. Is A ⊆ B?

Solution. Let x be any arbitrary but particular element in A. Then,

x = 2k + 5, for some integer k.

= 2(k + 2) + 1

Since k ∈ N, k + 2 ∈ N, and hence we have proved that any arbitrary element x ∈ A also
belongs to the set B. Thus A ⊆ B.
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Example. Let A = {n ∈ N |n = 2k2 − 3, for some k ∈ N} and B = {n ∈ N |n =
j2 + 3 for some j ∈ N}. Prove that A 6⊆ B.

Solution. Note that 5 ∈ A, since 5 = 2 · 22 − 3. Observe that for 5 to be an element of
B, 5 = j2 + 3, that is, j2 = 2, which is impossible since j must be a natural number. Thus
we have found an element of A that does not belong to B and hence A 6⊆ B.

Example. Let A = {n ∈ N |n ≥ 2 and n = 4j − 5, for some j ∈ N} and B = {n ∈
N |n ≥ 0 and n = 2k + 1 for some k ∈ N}. Prove that A ⊂ B.

Solution. Let x be an arbitrary but particular element of A. We know that x is of the
form 4j − 5, where j ∈ N. Thus we get

x = 4j − 5

= 2 · 2j − 6 + 1

= 2(2j − 3) + 1

Since x ≥ 2, it must be that 4j − 5 ≥ 2. Solving for j gives us j ≥ 7/4. Since j ∈ N, we
have j ≥ 2. Thus the integer 2j − 3 ≥ 1. Thus x ∈ B and hence A ⊆ B.

Note that the element 1 ∈ B, but it does not belong to A. Hence A ⊂ B.

Example. Recall the cartesian product of A and B, denoted by A × B, is the set of all
ordered pairs formed by taking an element from A together with an element from B in
all possible ways. That is, A × B = {(a, b) | a ∈ A, b ∈ B}. Prove that if A and B are
non-empty sets then A×B = B ×A iff A = B.

Solution. First we will prove that if A = B then A × B = B × A. Since A = B,
A×B = A×A = B ×A.

Now assume that A × B = B × A. We will show that A = B. Let x be any arbitrary
but particular element in A. Consider any element y ∈ B. Note that y must exist since
B 6= ∅. Since A×B = B×A, the element (x, y) is in A×B as well as B×A. Hence x ∈ B,
which means A ⊆ B. The proof for B ⊆ A is along the same lines.

Do you see why the condition that A are B are non-empty is necessary? Suppose that
one of the sets is empty and the other is not. Then A×B = B ×A = ∅, but A 6= B.

DeMorgan’s Laws Let A,B, and C be sets. Then

A− (B ∪ C) = (A−B) ∩ (A− C)

A− (B ∩ C) = (A−B) ∪ (A− C)

Example. Prove that the product of two odd numbers is an odd number.
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Solution. Let x and y be particular but arbitrarily chosen odd numbers. Then, x = 2k+1
and y = 2l + 1, for some integers k and l. We have

x · y = (2k + 1) · (2l + 1) = 4kl + 2(k + l) + 1 = 2(2kl + k + l) + 1

Let p = 2kl + k + l. Since k and l are integers, p is an integer and x · y = 2p+ 1 is odd.

Example. Prove that
√

2 is irrational.

Solution. For the purpose of contradiction, assume that
√

2 is a rational number. Then
there are integers a and b (b 6= 0) with no common factors such that

√
2 =

a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2 (10)

From (10) we conclude that a2 is even. This fact combined with the result of previous
example implies that a is even. Then, for some integer k, let

a = 2k (11)

Combining (10) and (11) we get

4k2 = 2b2

2k2 = b2

The above equation implies that b2 is even and hence b is even. Since we know a is even
this means that a and b have 2 as a common factor which contradicts the assumption that
a and b have no common factors.

We will now give a very elegant proof for the fact that “
√

2 is irrational” using the unique
factorization theorem which is also called the fundamental theorem of arithmetic.

The unique factorization theorem states that every positive number can be uniquely repre-
sented as a product of primes. More formally, it can be stated as follows.

Given any integer n > 1, there exist a positive integer k, distinct prime numbers
p1, p2, . . . , pk, and positive integers e1, e2, . . . , ek such that

n = pe11 p
e2
2 p

e3
3 · · · p

ek
k

and any other expression of n as a product of primes is identical to this except,
perhaps, for the order in which the factors are written.
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Example. Prove that
√

2 is irrational using the unique factorization theorem.

Solution. Assume for the purpose of contradiction that
√

2 is rational. Then there are
integers a and b (b 6= 0) such that

√
2 =

a

b

Squaring both sides of the above equation gives

2 =
a2

b2

a2 = 2b2

Let S(m) be the sum of the number of times each prime factor occurs in the unique
factorization of m. Note that S(a2) and S(b2) is even. Why? Because the number of
times that each prime factor appears in the prime factorization of a2 and b2 is exactly
twice the number of times that it appears in the prime factorization of a and b. Then,
S(2b2) = 1 + S(b2) must be odd. This is a contradiction as S(a2) is even and the prime
factorization of a positive integer is unique.

Example. Prove or disprove that the sum of two irrational numbers is irrational.

Solution. The above statement is false. Consider the two irrational numbers,
√

2 and
−
√

2. Their sum is 0 = 0/1, a rational number.

Example. Show that there exist irrational numbers x and y such that xy is rational.

Solution. We know that
√

2 is an irrational number. Consider
√

2
√

2
.

Case I:
√

2
√

2
is rational.

In this case we are done by setting x = y =
√

2.

Case II:
√

2
√

2
is irrational.

In this case, let x =
√

2
√

2
and let y =

√
2. Then, xy =

(√
2
√

2
)√2

= (
√

2)2 = 2, which is

an integer and hence rational.
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Example. Prove that for all positive integers n,

n is even↔ 7n+ 4 is even

Solution. Let n be a particular but arbitrarily chosen integer.
Proof for n is even → 7n+ 4 is even. Since n is even, n = 2k for some integer k. Then,

7n+ 4 = 7(2k) + 4 = 2(7k + 2)

Hence, 7n+ 4 is even.

Proof for 7n + 4 is even → n is even. Since 7n + 4 is even and n is a positive integer, let
7n+ 4 = 2l for some integer l ≥ 6. Then,

7n = 2l − 4 = 2(l − 2)

Clearly, 7n is even. Combining the fact that 7 is odd with the result of the Example 1, we
conclude that n is even.

We can also prove the latter by proving its contrapositive, i.e., we can prove

if n is odd then 7n+ 4 is odd.

Since n is a positive odd integer, we have n = 2k+ 1, for some integerk ≥ 0. Thus we have

7n+ 4 = 7(2k + 1) + 4

= 14k + 10 + 1

= 2(7k + 5) + 1

= 2k′ + 1,where k′ = 7k + 5 is an integer.

Example. Prove that there are infinitely many prime numbers.

Solution. Assume, for the sake of contradiction, that there are only finitely many primes.
Let p be the largest prime number. Then all the prime numbers can be listed as

2, 3, 5, 7, 11, 13, . . . , p

Consider an integer n that is formed by multiplying all the prime numbers and then adding
1. That is,

n = (2× 3× 5× 7× · · · p) + 1

Clearly, n > p. Since p is the largest prime number, n cannot be a prime number. In other
words, n is composite. Let q be any prime number. Because of the way n is constructed,
when n is divided by q the remainder is 1. That is, n is not a multiple of q. This contradicts
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the Fundamental Theorem of Arithmetic.

Alternate Proof by Filip Saidak. Let n be an arbitrary positive integer greater than
1. Since n and n + 1 are consecutive integers, they must be relatively prime. Hence, the
number N2 = n(n + 1) must have at least two different prime factors. Similarly, since
the integers n(n+ 1) and n(n+ 1) + 1 are consecutive, and therefore relatively prime, the
number

N3 = n(n+ 1)[n(n+ 1) + 1]

must have at least three different prime factors. This process can be continued indefinitely,
so the number of primes must be infinite.

Mathematical Induction

Example. Prove that for all integers n ≥ 1,

n∑
i=1

i =
n(n+ 1)

2

Solution. We will prove the claim using induction on n.
Induction hypothesis: Assume that the claim is true when n = k, for some k ≥ 1. In other
words assume that

k∑
i=1

i =
k(k + 1)

2

Base Case: n = 1. The claim is true for n = 1 as both sides of the equation equal to 1.
Induction step: To prove that the claim is true when n = k + 1. That is, we want to show
that

k+1∑
i=1

=
(k + 1)(k + 2)

2

We can do this as follows.

k+1∑
i=1

i =

k∑
i=1

i+ (k + 1)

=
k(k + 1)

2
+ k + 1 (using induction hypothesis)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
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Example. Prove that the sum of the first n positive odd numbers is n2.

Solution. We want to prove that ∀ positive integers n, P (n) where P (n) is the following
property.

n−1∑
i=0

2i+ 1 = n2

Base Case: We want to show that P (1) is true. This is clearly true as

0∑
i=0

2i+ 1 = 1 = 12

Induction Hypothesis: Assume P (k) is true for some k ≥ 1.
Induction Step: We want to show that P (k + 1) is true, i.e., we want to show that

k∑
i=0

2i+ 1 = (k + 1)2

We can do this as follows.

k∑
i=0

2i+ 1 =

k−1∑
i=0

2i+ 1 + 2k + 1

= k2 + 2k + 1 (using induction hypothesis)

= (k + 1)2

Example. Show that for all integers n ≥ 0, if r 6= 1,

n∑
i=0

ari =
a(rn+1 − 1)

r − 1

Solution. Let r be any real number that is not equal to 1. We want to prove that ∀
integers n, P (n), where P (n) is given by

n∑
i=0

ari =
a(rn+1 − 1)

r − 1

Base Case: We want to show that P (0) is true.

0∑
i=0

ari = a =
a(r − 1)

r − 1
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Induction Hypothesis: Assume that P (k) is true for some k ≥ 0.
Induction Step: We want to show that P (k + 1) is true, i.e., we want to prove that

k+1∑
i=0

ari =
a(rk+2 − 1)

r − 1

We can do this as follows.

L.H.S. =

k+1∑
i=0

ari

=
k∑
i=0

ari + ark+1

=
ark+1 − a
r − 1

+ ark+1

=
a(rk+1 − 1)

r − 1
+
ark+1(r − 1)

r − 1

=
a

r − 1

(
rk+1(1 + r − 1)− 1

)
=

a

r − 1

(
rk+2 − 1

)
=

a(rk+2 − 1)

r − 1

Example. Prove that ∀ non-negative integers n,

n∑
i=0

2i = 2n+1 − 1

Solution. By setting a = 1, r = 2 in the result of the previous problem, the claim follows.

Example. Prove that ∀ non-negative integers n, 22n − 1 is a multiple of 3.

Solution. We want to prove that ∀ non-negative integers n, P (n), where P (n) is

22n − 1 = 3k, for some non-negative integer k

Base Step: P (0) is true as shown below.

20 − 1 = 0 = 3 · 0.
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Induction Hypothesis: Assume that P (x) is true for some x ≥ 0, i.e., 22x − 1 = 3 · k′, for
some k′ ≥ 0.
Induction Step: We want to prove that P (x+ 1) is true, i.e., we want to show that

22(x+1) − 1 = 3l, for some non-negative integer l.

We can show this as follows.

L.H.S. = 22(x+1) − 1

= 22x+2 − 1

= 22x · 22 − 1

= 22x · 4− 1

= 22x · (3 + 1)− 1

= 3 · 22x + 22x − 1

= 3 · 22x + 3 · k′ (using induction hypothesis)

= 3(22x + k′)

= 3l, where l = 22x + k′

Since x and k′ are integers l is also an integer. Hence, P (x+ 1) is true.

Example. Prove that ∀n ∈ N, n > 1→ n! < nn.

Solution. Below is a simple direct proof for this inequality.

n! = 1× 2× 3× · · · × n
< n× n× n× · · · × n
= nn

We now give a proof using induction. Let P (n) denote the following property.

n! < nn

Induction Hypothesis: Assume that P (k) is true for some k > 1.
Base Case: We want to prove P (2). P (2) is the proposition that 2! < 22, or 2 < 4, which
is true.
Induction Step: We want to prove P (k+1), i.e., we want to prove that (k+1)! < (k+1)k+1.

L.H.S. = (k + 1)!

= k!× (k + 1)

< kk × (k + 1) (using induction hypothesis)

< (k + 1)k × (k + 1) (since k > 1)

= (k + 1)k+1

Example. Recall that for any set A, P(A) denotes the power set of A. Let S =
{x1, x2, . . . , xn}. Prove using induction that for all positive integers n, |P(S)| = 2n.
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Solution. We will prove the claim using induction on n.
Induction Hypothesis: Assume that the claim is true when n = k, for some k ≥ 1. In other

words, assume that if S = {x1, x2, . . . , xk}, then |P(S)| = 2k.
Base Case:n = 1. When S = {x1}, there are exactly two subsets of S, namely ∅ and S,
itself. Thus the claim is true when n = 1.
Induction Step: We want to prove that the claim is true when n = k + 1. In other

words, we want to show that if S = {x1, x2, . . . , xk, xk+1}, then |P(S)| = 2k+1. Let
S′ = {x1, x2, . . . , xk}. The set of all subsets of S can be partitioned into S1 and S2,
where S1 ⊂ P(S) contains subsets of S that does not contain xk+1, and S2 ⊂ S contains
subsets of P(S) that contains xk+1. Thus we have

|P(S)| = |S1|+ |S2| (12)

Note that S1 contains all subsets of P(S′). By the induction hypothesis, we have |S1| =
|P(S′)| = 2k. We will now compute |S2|. Observe that each set in S2 is of the form
{xk+1}∪X, where X is a subset of S′. By induction hypothesis, we know that there are 2k

subsets of S′ and hence |S2| = 2k. Plugging in the values for |S1| and |S2| in (12), we get

|P(S)| = 2k + 2k = 2k+1

Example Let A1, A2, . . . , An be sets (where n ≥ 2). Suppose for any two sets Ai and Aj
either Ai ⊆ Aj or Aj ⊆ Ai. Prove by induction that one of these n sets is a subset of all of
them.

Solution. We will prove the claim using induction on n.
Induction Hypothesis: Assume that the claim is true when n = k, for some k ≥ 2. In other
words, assume that if we have sets A1, A2, . . . , Ak, where for any two sets Ai and Aj , either
Ai ⊆ Aj or Aj ⊆ Ai then one of the k sets is a subset of all of the k sets.
Base Case: n = 2. We have two sets A1, A2 and we know that A1 ⊆ A2 or A2 ⊆ A1.
Without loss of generality assume that A1 ⊆ A2. Then A1 is a subset of A1 and is also a
subset of A2, so the claim holds when n = 2.
Induction Step: We want to prove the claim when n = k + 1. That is, we are given a set
S = {A1, A2, . . . , Ak+1} of with the property that for every pair of sets Ai ∈ S and Aj ∈ S,
either Ai ⊆ Aj or Aj ⊆ Ai. We want to show that there is a set in S that is a subset of all
k + 1 sets in S. Let S′ = S \ {Ak+1}. By induction hypothesis, there is a set Ap ∈ S′ that
is a subset of all sets in S′. We now consider the following two cases.
Case 1 : Ap ⊆ Ak+1. Then it follows that Ap is a subset of all sets in S.
Case 2 : Ak+1 ⊆ Ap. Since Ap is a subset of all sets in S′ and Ak+1 ⊆ Ap, it follows that
Ak+1 is a subset of all sets in S.

Example. For all n ≥ 1, prove that n lines separate the plane into (n2 +n+2)/2 regions.
Assume that no two of these lines are parallel and no three pass through a common point.
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Solution. Let P (n) be the property that n lines, such that no two of them are parallel
and no three of them pass through a common point, separate the plane into (n2 +n+ 2)/2
regions. We will prove the claim by induction on n.

Induction Hypothesis: Assume that P (k) is true for some k > 0.
Base Case: P (1) is true since one line divides the plane into 2 regions which is also given
by (12 + 1 + 2)/2.
Induction Step: To prove that P (k+ 1) is true. Consider a set S of k+ 1 lines such that no
two of them are parallel and no three of them pass through a common point. Remove any
line ` from the set S. Let S′ be the resulting set of k lines. By induction hypothesis, the k
lines in S′ divide the plane into (k2 + k + 2)/2 regions. Now we add the line ` to the set
S′ to obtain the set S. Line ` intersects exactly once with each of the k lines in S′. These
intersections divide the line ` into k + 1 line segments. Each of these line segments passes
through a region and hence k + 1 additional regions are created. Hence, the total number
of regions formed by k + 1 lines is given by

k2 + k + 2

2
+ k + 1 =

k2 + 3k + 4

2
=
k2 + 2k + 1 + k + 3

2
=

(k + 1)2 + (k + 1) + 2

2

Thus P (k + 1) is correct and this completes the proof.

Example. Let n be a non-negative integer. Show that any 2n×2n region with one central
square removed can be tiled using L-shaped pieces, where the pieces cover three squares at
a time (Figure 4).

Solution. (Attempt 1) Let Rn denote a 2n × 2n region. Let P (n) be the property that
Rn with one central square removed can be tiled using L-shaped pieces.

Figure 4: A L-tile and an L-tiling of a 22 × 22 region without a square.

Induction Hypothesis: Assume that P (k) is true for some k ≥ 0.
Base Case: We want to prove that P (0) is true. This is true because a 1 × 1 region with
one central square removed requires 0 tiles.
Induction Step: We want to prove that P (k + 1) is true, i.e., region Rk+1 with one central
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square removed can be tiled using L-shaped pieces.
Rk+1 can be divided into four regions of size 2k × 2k. Note that the four central corners of
Rk+1 can be covered using one L-shaped tile and one square hole (Figure 5). Each of the
four remaining regions has one hole and is of the size 2k × 2k. By induction hypothesis,
these regions can be covered using L-shaped pieces. Thus, since the four disjoint regions
can be covered using L-shaped tiles, Rk+1 without a central square can also be covered
using L-shaped tiles.

Figure 5: Illustration of the two proof attempts.

Our use of induction hypothesis is incorrect as we have assumed that region Rk without a
central square (not a corner square) can be covered using L-shaped tiles.

Surprisingly, we can get around this obstacle by proving the following stronger claim.

“For all positive integers n, any Rn region with any one square removed can be L-tiled.”

Let P (n) be the property that Rn without one square can be L-tiled.
Induction Hypothesis: Assume that P (k) is true for some k.
Base Case: We want to prove that P (0) is true. This is true because a 1 × 1 region with
one square removed requires 0 tiles.
Induction Step: We want to prove that P (k+1) is true, i.e., region Rk+1 wthout one square
that is located anywhere can be L-tiled. Divide Rk+1 into four Rk regions. One of the
four Rk regions that does not have one square can be L-tiled (using induction hypothesis).
Each of the other three Rk regions without the corner square that is located at the center
of Rk+1 can be L-tiled (using induction hypothesis). By using one more L-tile we can cover
the three central squares of Rk+1.

Strong Induction.

For any property P , if P (0) and ∀n ∈ N, P (0)∧ P (1)∧ P (2)∧ · · · ∧ P (k)→ P (k+ 1), then
∀n ∈ N, P (n).
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Example. Prove that if n is an integer greater than 1 then either n is a prime or it can
be written as a product of primes.

Solution. Let P (n) be “n can be written as a product of primes”.
Induction Hypothesis: Assume that P (j) is true for 1 < j ≤ k.
Base Case: We want to show that P (2) is true. This is clearly true as 2 is a prime.
Induction Step: We want to show that P (k + 1) is true.
Case I: k + 1 is prime. In this case we are done.
Case II: k + 1 is composite. Then,

k + 1 = a× b, for some a and b s.t. 2 ≤ a ≤ b < k + 1

By induction hypothesis, a is a prime or it can be written as a product of primes. The
same applies to b. Since k + 1 = a × b, it can be written as a product of primes, namely
those primes in the factorization of a and those in the factorization of b.

Example. Prove that, for any positive integer n, if x1, x2, . . . , xn are n distinct real
numbers, then no matter how the parenthesis are inserted into their product, the number
of multiplications used to compute the product is n− 1.

Solution. Let P (n) be the property that “If x1, x2, . . . , xn are n distinct real numbers,
then no matter how the parentheses are inserted into their product, the number of multi-
plications used to compute the product is n− 1”.
Induction Hypothesis: Assume that P (j) is true for all j such that 1 ≤ j ≤ k.
Base Case: P (1) is true, since x1 is computed using 0 multiplications.
Induction Step: We want to prove P (k + 1). Consider the product of k + 1 distinct fac-
tors, x1, x2, . . . , xk+1. When parentheses are inserted in order to compute the product of
factors, some multiplication must be the final one. Consider the two terms, of this final
multiplication. Each one is a product of at most k factors. Suppose the first and the second
term in the final multiplication contain fk and sk factors. Clearly, 1 ≤ fk, sk ≤ k. Thus,
by induction hypothesis, the number of multiplications to obtain the first term of the final
multiplication is fk − 1 and the number of multiplications to obtain the second term of the
final multiplication is sk − 1. It follows that the number of multiplications to compute the
product of x1, x2, . . . , xk, xk+1 is

(fk − 1) + (sk − 1) + 1 = fk + sk − 1 = k + 1− 1 = k

Example. The game of NIM is played as follows: Some positive number of sticks are
placed on the ground. Two players take turns, removing one, two or three sticks. The
player to remove the last stick loses.

A winning strategy is a rule for how many sticks to remove when there are n left. Prove
that the first player has a winning strategy iff the number of sticks, n, is not 4k+ 1 for any
k ∈ N.
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Solution. We will show that if n = 4k + 1 then player 2 has a strategy that will force a
win for him, otherwise, player 1 has a strategy that will force a win for him.

Let P (n) be the property that if n = 4k+ 1 for some k ∈ N then the first player loses, and
if n = 4k, 4k + 2, or 4k + 3, the first player wins. This exhausts all possible cases for n.
Induction Hypothesis: Assume that for some z ≥ 1, P (j) is true for all j such that 1 ≤ j ≤ z.
Base Case: P (1) is true. The first player has no choice but to remove one stick and lose.
Induction Step: We want to prove P (z + 1). We consider the following four cases.
Case I: z + 1 = 4k + 1, for some k. We have already handled the base case, so we can
assume that z + 1 ≥ 5. Consider what the first player might do to win: he can remove 1,
2, or 3 sticks. If he removes one stick then the remaining number of sticks n = 4k. By
strong induction, the player who plays at this point has a winning strategy. So the player
who played first loses. Similarly, if the first player removes two sticks or three sticks, the
remaining number of sticks is 4(k − 1) + 3 and 4(k − 1) + 2 respectively. Again, the first
player loses (using induction hypothesis). Thus, in this case, the first player loses regardless
of what move he/she makes.
Case II: z + 1 = 4k, or z + 1 = 4k + 2, or z + 1 = 4k + 3. If the first player removes three
sticks in the first case, one stick in the second case, and two sticks in the third case then
the second player sees 4(k− 1) + 1 sticks in the first case and 4k+ 1 sticks in the other two
cases. By induction hypothesis, in each case the second player loses.

Example. Prove that the two forms of induction, weak induction and strong induction,
are equivalent. In other words, prove that any statement that admits a strong induction
proof can be proved using weak induction and vice-versa.

Solution. Suppose we want to show that a P (n) is true for all positive integers n ≥ n0.
The two forms of inductive proofs are as follows.

Weak Induction: Assume that

(aw) P (n0) is true
(bw) For any k ≥ n0, P (k) =⇒ P (k + 1) is true.

Then, P (n) is true for all positive integers n ≥ n0.

Strong Induction: Assume that

(as) P (n0) is true
(bs) For any k ≥ n0, P (n0) ∧ P (n0 + 1) ∧ · · · ∧ P (k) =⇒ P (k + 1) is true.

Then, P (n) is true for all positive integers n ≥ n0.

We will show that it is always possible to convert a strong induction proof into a weak
induction proof and vice-versa.
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The conversion from a weak induction proof to a strong induction proof is trivial, since (bs)
implies (bw).

We now show that a strong induction proof can be converted to a weak induction proof.
Let

Q(n)
.
= P (n0) ∧ P (n0 + 1) ∧ · · · ∧ P (n)

Induction Hypothesis: Assume that Q(k) is true for some k ≥ n0.
Base Case: Since Q(n0) = P (n0) and we know that P (n0) is true from (as), Q(n0) is true.
Induction Step: We want to show that Q(k) =⇒ Q(k + 1). We have

Q(k) =⇒ P (k + 1) (from (bs))

∴ Q(k) =⇒ Q(k) ∧ P (k + 1)

∴ Q(k) =⇒ Q(k + 1)

Thus we have converted a strong induction proof in P to a weak induction proof in Q.

Graphs

A graph consists of two sets, a non-empty set, V , of vertices or nodes, and a possibly
empty set, E, of 2-element subsets of V . Such is graph is denoted by G = (V,E). Each
element of E is called an edge. We say that an edge {u, v} ∈ E connects vertices u and
v. Two nodes u and v are adjacent if {u, v} ∈ E. Nodes adjacent to a vertex u are called
neighbors of u. The number of neighbors of a vertex v is called the degree of v and is
denoted by deg(v). The value δ(G) = minv∈V {deg(v)} is the minimum degree of G, the
value ∆(G) = maxv∈V {deg(v)} is the maximum degree of G. An edge that connects a node
to itself is called a loop and multiple edges between the same pair of nodes are called parallel
edges. Graphs without loops and parallel edges are called simple graphs, otherwise they
are called multigraphs. Unless specified otherwise, we will only deal with simple graphs.

Example. Prove that the sum of degrees of all nodes in a graph is twice the number of
edges.

Solution. Since each edge is incident to exactly two vertices, each edge contributes two to
the sum of degrees of the vertices. The claim follows.

Example. In any graph there are an even number of vertices of odd degree.

Solution. Let Ve and Vo be the set of vertices with even degree and the set of vertices with
odd degree respectively in a graph G = (V,E). Then,∑

v∈V
deg(v) =

∑
v∈Ve

deg(v) +
∑
v∈Vo

deg(v)
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The first term on R.H.S. is even since each vertex in Ve has an even degree. From the
previous example, we know that L.H.S. of the above equation is even. Thus the second
term on the R.H.S. must be even. Let |Vo| = `. We want to show that ` is even. Since each
vertex in Vo has odd degree, we have

(2k1 + 1) + (2k2 + 1) + · · ·+ (2k` + 1) is an even number

2(k1 + k2 + · · ·+ k`) + ` is an even number

∴ ` is an even number

This proves the claim.

A walk in G is a non-empty sequence v0e0v1e1 . . . ek−1vk of vertices and edges in G such
that ei = {vi, vi+1} for all i < k. If the vertices in a walk are all distinct, we call it a path
in G. Thus, a path in G is a sequence of distinct vertices v0, v1, v2, . . . vk such that for all i,
0 ≤ i < k, {vi, vi+1} ∈ E. The length of the walk (path) is k, the number of edges in the
walk (resp. path). Note that the length of the walk (path) is one less than the number of
vertices in the walk (path) sequence. If vo = vk, the walk (path) is closed. A closed path is
called a cycle.
The graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A graph
G is connected if there is a path in G between its every pair of vertices. A graph H is a
connected component(“island”) of G if (a) H is a subgraph of G, (b) H is connected, and
(c) H is maximal, i.e., H is not contained in any other connected subgraph of G. In short,
H is a connected component of G if H is a maximal subgraph of G that is connected.

We say that H is an induced subgraph of a graph G if the vertex set of H is a subset of the
vertex set of G, and if u and v are vertices in H, then (u, v) is an edge in H iff (u, v) is an
edge in G.

Example. Prove that every graph with n vertices and m edges has at least n −m con-
nected components.

Solution. We will prove this claim by doing induction on m.
Induction Hypothesis: Assume that for some k ≥ 0, every graph with n vertices and k edges
has at least n− k connected components.
Base Case: m = 0. A graph with n vertices and no edges has n connected components as
each vertex itself is a connected component. Hence the claim is true for m = 0.
Induction Step: We want to prove that a graph, G, with n vertices and k + 1 edges has at
least n− (k+ 1) = n− k− 1 connected components. Consider a subgraph G′ of G obtained
by removing any arbitrary edge, say {u, v}, from G. The graph G′ has n vertices and k
edges. By induction hypothesis, G′ has at least n − k connected components. Now add
{u, v} to G′ to obtain the graph G. We consider the following two cases.
Case I: u and v belong to the same connected component of G′. In this case, adding the
edge {u, v} to G′ is not going to change any connected components of G′. Hence, in this
case the number of connected components of G is the same as the number of connected
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components of G′ which is at least n− k > n− k − 1.
CaseII: u and v belong to different connected components of G′. In this case, the two
connected components containing u and v become one connected component in G. All
other connected components in G′ remain unchanged. Thus, G has one less connected
component than G′. Hence, G has at least n− k − 1 connected components.

Example. Prove that every connected graph with n vertices has at least n− 1 edges.

Solution. We will prove the contrapositive, i.e., a graph G with m ≤ n−2 edges is discon-
nected. From the result of the previous problem, we know that the number of components
of G is at least

n−m ≥ n− (n− 2) = 2

which means that G is disconnected. This proves the claim.

One could also have proved the above claim directly by observing that a connected graph
has exactly one connected component. Hence, 1 ≥ n−m. Rearranging the terms gives us
m ≥ n− 1.

Review of Definitions: Walk, path, cycle, connected graph, subgraph, induced sub-
graph, connected component.

Trees

A graph with no cycles is acyclic. A tree is a connected acyclic graph. A vertex of degree
greater than 1 in a tree is called an internal vertex, otherwise it is called a leaf. A forest is
an acyclic graph.

Example. Prove that every tree with at least two vertices has at least two leaves and
deleting a leaf from an n-vertex tree produces a tree with n− 1 vertices.

Solution. A connected graph with at least two vertices has an edge. In an acyclic graph,
an endpoint of a maximal non-trivial path (a path that is not contained in a longer path)
has no neighbors other than its only neighbor on the path. Hence, the endpoints of such a
path are leaves.

Let v be a leaf of a tree T and let T ′ = T − v. A vertex of degree 1 belongs to no path
connecting two vertices other than v. Hence, for any two vertices u,w ∈ V (T ′), every path
from u to w in T is also in T ′. Hence T ′ is connected. Since deleting a vertex cannot create
a cycle, T ′ is also acyclic. Thus, T ′ is a tree with n− 1 vertices.

Example. For a n-vertex graph G, the following are equivalent and characterize trees
with n vertices.

(1) G is a tree.
(2) G is connected and has exactly n− 1 edges.
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(3) G is minimally connected, i.e., G is connected but G− {e} is disconnected
for every edge e ∈ G.
(4) G contains no cycle but G+ {x, y} does, for any two non-adjacent vertices
x, y ∈ G.
(5) Any two vertices of G are linked by a unique path in G.

Solution. (1 → 2). We can prove this by induction on n. The property is clearly true
for n = 1 as G has 0 edges. Assume that any tree with k vertices, for some k ≥ 0, has k−1
edges. We want to prove that a tree G with k + 1 vertices has k edges. From the example
we did in last class we know that G has a leaf, say v, and that G′ = G− {v} is connected.
By induction hypothesis, G′ has k − 1 edges. Since deg(v) = 1, G has k edges.

(2 → 3). Note that G − {e} has n vertices and n − 2 edges. We know that such a graph
has at least 2 connected components and hence is disconnected.

(3 → 4). We are assuming that removing any edge in G disconnects G. If G contains a
cycle then removing any edge, say {u, v}, that is part of the cycle does not disconnect G as
any path that uses {u, v} can now use the alternate route from u to v on the cycle. Since
G is connected there is a path from x to y in G. Let G′ = G+ {x, y}. G′ consists of a cycle
formed by the edge {x, y} and the path from x to y in G.

(4→ 5). Note that since G+ {x, y} creates a cycle for for any two non-adjacent vertices in
G, it must be that there must be a path between x and y in G. We will now show that there
is exactly one path between any two vertices in G. We will prove this by showing that if
there are two vertices that have two different paths between them then G contains a cycle.
Assume that there are two paths from u to v. Beginning at u, let a be the first vertex at
which the two paths separate and let b be the first vertex after a where the two paths meet.
Then, there are two simple paths from a to b with no common edges. Combining these two
paths gives us a cycle.

(5→ 1). Since there is a path between any two vertices in G, G must be connected. Now
we want to show that G is acyclic. Assume otherwise. Then, any two vertices on the cycle
can reach each other by two disjoint, simple paths that consist of edges of the cycle. This
proves that not every pair of vertices in G has a unique path between them. We have thus
proved the claim by proving the contrapositive.

Spanning Trees

A spanning subgraph of a graph G is a subgraph with vertex set V (G). A spanning tree is
a spanning subgraph that is a tree.

Example. Every connected graph G = (V,E) contains a spanning tree.
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Solution. Let T ′ = (V,E′) be a minimally connected spanning subgraph of G. For a
moment assume that such a T ′ always exists. Then, by the equivalence of statements (1)
and (3), T ′ is a tree. Since T ′ is also a spanning subgraph of G, it is a spanning tree of G.

We now show that T ′, a minimally connected subgraph of G always exists. We will
show this by actually constructing a minimally connected subgraph of G as follows. For
each edge e ∈ E, remove e from E if its removal does not disconnect the graph. Let T ′ be
the resulting subgraph obtained after each edge has been processed once. By construction
and because G is connected, T ′ is connected. Also, by construction, no edge in T ′ can be
removed without disconnecting T ′. Hence, T ′ is minimally connected.

Rooted Trees

A rooted tree is a tree in which one vertex is distinguished from the others and is called the
root. The level of a vertex, say u, is the number of edges along the unique path between u
and the root. The height of a rooted tree is the maximum level of any vertex in the tree.
Given any vertex of a rooted tree, the children of v are neighbors of v that are one level
away from the root than v. If a vertex v is a child of u, then u is called the parent of v. Two
vertices that are both children of the same parent are called siblings. Given vertices v and
w, if v lies on the unique path between w and the root, then v is an ancestor of w and w is
a descendant of v. A vertex in a rooted tree is called a leaf if it has no children. Vertices
that have children are called internal vertices. The root is an internal vertex unless it is
the only vertex in the graph, in which case it is a leaf. These definitions are illustrated
in Figure 6. A binary tree is a rooted tree in which every internal vertex has at most two

u

v

root

w

level 0

level 1

level 2

level 3

level 4

Figure 6: A rooted tree of height 4. In this tree v is a child of u, u is a parent of v, and v
and w are siblings. All vertices in the marked portion of the tree descendants of u, which
is an ancestor of each vertex.

children. Each child in the binary tree is designated either a left child or a right child (but
not both). A full binary tree is a binary tree in which each internal vertex has exactly two
children.

Given an internal vertex v of a binary tree T , the left subtree of v is the binary tree
whose root is the left child of v, whose vertices consists of the left child of v and all its
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descendants, and whose edges consist of all those edges of T that connect the vertices of
the left subtree together. The right subtree of v is defined analogously.

Example. Prove the following. If k is a positive integer and T is a full binary tree with
k internal vertices then T has a total of 2k + 1 vertices and has k + 1 leaves.

Solution. Suppose T is a full binary tree with k internal vertices. Observe that the set
of all vertices of T can be partitioned into two disjoint subsets: the set of all vertices in T
that have a parent and the set of vertcies in T that do not have a parent. The root of T is
the only vertex in T that does not have a parent. Also, every internal vertex of a full binary
tree has exactly two children. Thus, the total number of children of all internal vertices
equals 2k. This is also the number of vertices that have a parent. Adding one for the root
to this number gives us the total number of vertices in T to be 2k + 1.

Also, the total number of vertices in T is the sum of the number of internal vertices in T
and the number of leaves in T . Hence, the number of leaves in T equals 2k+ 1− k = k+ 1.

Example. Any binary tree of height at most h has at most 2h leaves.

Solution. We will prove the claim by doing induction on h. Let P (h) be the property
that a binary tree of height at most h has at most 2h leaves.

Induction Hypothesis: Assume that P (k) is true for some k ≥ 0.
Base Case: P (0) is clearly true as there is only one tree of height at most zero. This tree
has only one vertex which is a leaf. This equals 20 = 1.
Induction Step: We want to prove that P (k+ 1) is true. Consider any binary tree T having
height at most k + 1, and root r. Since we have already proven the claim for trees with
height zero in the base case, we will assume that the height of T is at least one. The root
r has at least one and at most two children. Each subtree rooted at a child of r is a rooted
binary tree of height at most k. By induction hypothesis, the number of leaves in these
subtrees is at most 2k. Since r has at most two subtrees rooted at its children, the total
number of leaves in T is at most 2×2k = 2k+1. This proves that P (k+1) is true and hence
completes the proof.

Hamiltonian Graphs

A Hamiltonian cycle in a graph G is a cycle in which each vertex of G appears exactly
once. A graph is Hamiltonian if it contains a Hamiltonian cycle.

To determine whether a graph is Hamiltonian or not is a very hard problem.

Example. For any integer n ≥ 3, let G be a simple graph on n vertices, and assume that
all vertices in G are of degree at least n/2. Prove that G has a Hamiltonian cycle.
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Solution. Assume for contradiction that G does not have a Hamiltonian cycle. Add new
edges to G one-by-one, until we come to a point where adding an edge, say (x, y), creates a
Hamiltonian cycle. Let G′ be the graph in which all vertices have degree at least n/2 and
G′ does not have a Hamiltonian cycle, but adding (x, y) will make G′ Hamiltonian. Since
adding edge (x, y) creates a Hamiltonian cycle in G′, it must be that G′ has a Hamiltonian
path that begins at x and ends at y. Let the path be x = v1, v2, . . . , vn−1, vn = y. We
now apply the pigeon-hole principle as follows. Let the pigeons be the edges incident on
the vertices x and y, and let the holes be the (n − 1) edges of the form (vi, vi+1), where
1 ≤ i ≤ n−1. An edge (pigeon) of the form (x, vi) is assigned to the “hole” (vi−1, vi) and an
edge (pigeon) of the form (y, vi) is assigned to the “hole” (vi, vi+1). Since deg(x) ≥ n/2 and
deg(y) ≥ n/2 and at most one edge incident on x (or y) is assigned to a hole, by the pigeon-
hole principle, there must be i such that 3 ≤ i ≤ n− 1 and there is an edge (x, vi) and an
edge (y, vi−1) (see figure below). Note that since the edge (x, y) does not exist in G′, the hole
corresponding to (v1, v2) only has one edge, namely (x, v2). Similarly, the hole (vn−1, vn)
will only contain the edge (y, vn−1). But this would mean that xv2v3 · · · vi−1yvn−1vn−2 · · · vi
is a Hamiltonian cycle, a contradiction.

x y

v2 vn−1vi−1 vi

Example. If δ(G) ≥ 2 then G contains a cycle.

Solution. Let P be a longest path (actually, any maximal path suffices) in G and let u
be an endpoint of P . Since P cannot be extended, every neighbor of u is a vertex in P .
Since deg(u) ≥ 2, u has a neighbor v ∈ P via an edge that is not in P . The edge {u, v}
completes the cycle with the portion of P from v to u.

Eulerian Graphs

An Eulerian circuit is a closed walk in which each edge appears exactly once. A connected
graph is Eulerian if it contains an Eulerian circuit. Recall that a Hamiltonian cycle in a
graph G is a cycle in which each vertex of G appears exactly once. A graph is Hamiltonian
if it contains a Hamiltonian cycle.

To determine whether a graph is Hamiltonian or not is significantly harder than determining
whether a graph is Eulerian or not. The following theorem gives us a necessary and sufficient
condition for a connected graph to be Eulerian.

Example. Prove that a connected graph G is Eulerian iff every vertex in G has even
degree.
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Solution. Necessity: To prove that “if G is Eulerian then every vertex in G has even
degree”. Let C denote the Eulerian circuit in G. Each passage of C through a vertex uses
two incident edges and the first edge is paired with the last at the first vertex. Hence every
vertex has even degree.

Sufficiency: To prove that “if every vertex in G has even degree then G is Eulerian”. We
will prove this using induction on the number of edges, m.
Induction Hypothesis: Assume that the property holds for any graph G with j edges, for
all j such that 0 ≤ j ≤ k.
Base Case: m = 0. In this case G has only one vertex and that itself forms a Eulerian
circuit.
Induction Step: We want to prove that the property holds when G has n vertices and k+ 1
edges. Since G has at least one edge and because G is connected and every vertex of G has
even degree, δ(G) ≥ 2. From the result of the previous problem, G contains a cycle, say C.
Let G′ be the graph obtained from G by removing the edges in E(C). Since C has either
0 or 2 edges at every vertex of G, each vertex in G′ also has even degree. However, G′

may not be connected. By induction hypothesis, each connected component of G′ has an
Eulerian circuit. We can now construct an Eulerian circuit of G as follows. Traverse C, but
when a component of G′ is entered for the first time, we detour along the Eulerian circuit
of that component. The circuit ends at the vertex where we began the detour. When we
complete the traversal of C, we have completed an Eulerian circuit of G.

Alternative Proof for the Sufficiency Condition: Let G be a graph with all degrees
even and let

W = v0e0 . . . el−1vl

be the longest walk in G using no edge more than once. Since W cannot be extended all
edges incident on vl are part of W . Since all vertices in G have even degree it must be that
vl = v0. Thus W is a closed walk. If W is Eulerian then we are done. Otherwise, there
must be an edge in E[G] \ E[W ] that is incident on some vertex in W . Let this edge be
e = {u, vi}. Then the walk

ueviei . . . el−1vle0v0e1 . . . ei−1vi

is longer than W , a contradiction.

Graph Coloring

Consider the following scenario. There are n courses for which final exams need to be
scheduled. Each exam needs a two hour slot. Since each student may be in more than one
course, the exams need to be scheduled such that two courses that have common students
don’t have their final exams at the same time. The objective is to find minimum number
of time slots that would be required to schedule all the exams.

A graph is k-colorable if each vertex can be colored using one of the k colors so that adjacent
vertices are colored using different colors. The chromatic number of a graph G, χ(G), is
the smallest value of k for which G is k-colorable.
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The problem of scheduling exams can be modeled as a graph coloring problem. Construct
a graph in which there is a vertex for each course and two vertices u and v are connected
by an edge if there is a student who is taking both the courses corresponding to u and v.
The chromatic number of the graph will provide the required solution to the problem.

Finding the chromatic number of a graph “quickly” is a very hard problem. Even finding
a reasonable approximate solution is very hard!!

A bipartite graph is a graph that is 2-colorable.

Example. Prove that a graph with maximum degree at most k is (k + 1)-colorable.

Solution. Let P (n) be the property that a graph with n vertices and maximum degree
at most k is (k + 1)-colorable. We will now prove the claim by doing induction on n.
Base Case: P (1) is clearly true as a graph with just one vertex has maximum degree zero
and can be colored using one color.
Induction Hypothesis: Assume that P (h) is true for some h ≥ 1.
Induction Step: We want to prove that P (h+ 1) is true. Let G be a graph with maximum
degree at most k and having h + 1 vertices. Let G′ be the graph obtained from G by
removing a vertex v along with the edges incident on v. G′ has h vertices and has a
maximum degree at most k. By induction hypothesis, G′ is (k + 1)-colorable. Now insert
v along with its incident edges. Since we have a palette of k + 1 colors and deg(v) ≤ k, we
can always color v using a color that is not used by any of its neighbors. Thus, P (h+ 1) is
true. This completes the proof.

Matchings

A matching in a graph is a set of edges with no shared end-points. The vertices incident
on the edges of a matching M are called M-saturated, the others are called M-unsaturated.
A perfect matching in a graph is a matching that saturates every vertex in the graph.

A maximal matching in a graph is a matching that is not contained in a larger matching.
A maximum matching is a matching of maximum size among all matchings in the graph.
Every maximum matching is a maximal matching, but the converse is not true. Figure 7
illustrates some of these definitions.

Given a matching, M , an M-alternating path is a path that alternates between edges in M
and edges not in M . An M -alternating path whose endpoints are M -unsaturated is called
an M-augmenting path. Given an M -augmenting path P , we can replace the edges of M in
P with the edges in E(P ) \M to obtain a new matching with one more edge. Thus, when
M is a maximum matching there is no M -augmenting path.

For graphs G and H, the symmetric difference G⊕H is a subgraph of G∪H whose edges are
the edges of G∪H that appear in either G or H, but not both. We also use the notation for
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(a) (b)

Figure 7: (a) a graph G with the bold edges representing a maximal matching, (b) the bold
edges represent a maximum matching in G that is also perfect.

set of edges; in particular, if M and M ′ are matchings then M⊕M ′ = (M \M ′)∪(M ′ \M).

Example. Prove that a matching M in G is maximum iff G contains no M -augmenting
path.

Solution. We will prove the necessary condition by proving its contrapositive, i.e., we will
prove that if G contains an M -augmenting path then M is not a maximum matching. Sup-
pose that G contains a M -augmenting path v0v1v2 . . . v2m+1 (Note that an M -augmenting
path must be of odd length). Define M ′ ⊆ E by

M ′ = M \ {(v1, v2), (v3, v4), . . . , (v2m−1, v2m)} ∪ {(v0, v1), (v2, v3), . . . , (v2m, v2m+1)}

Then M ′ is a matching in G and |M ′| = |M |+ 1. Thus M is not a maximum matching.

We will prove the converse by proving the contraposition. Assume thatM is not a maximum
matching. Let M ′ be a maximum matching in G. Then |M ′| > |M |. Set H = G[M ⊕M ′].
Figure 9 illustrates this operation. Observe that every vertex in H has either degree one
or degree two in H, since it can be incident with at most one edge of M and one edge of
M ′. Thus each component of H is either an even cycle with edges alternating in M and
M ′ or else a path with edges alternating in M and M ′. Since |M ′| > |M |, H contains more
edges of M ′ than of M , and H must contain a component which is a path, P , that starts
and ends with edges in M ′. Since the start vertex and end vertex of P are M ′-saturated
in H they must be M -unsaturated in G. Thus, P is an M -augmenting path in G. This
completes the proof.

Example. Prove that a matching M in G is maximum iff G contains no M -augmenting
path.
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(a) (b) (c)

Figure 8: (a) a graph G with a matching M represented by the bold edges, (b) the dashed
edges represent a matching M ′ in G, (c) G[M ⊕M ′]

Solution. We will prove the necessary condition by proving its contrapositive, i.e., we will
prove that if G contains an M -augmenting path then M is not a maximum matching. Sup-
pose that G contains a M -augmenting path v0v1v2 . . . v2m+1 (Note that an M -augmenting
path must be of odd length). Define M ′ ⊆ E by

M ′ = M \ {(v1, v2), (v3, v4), . . . , (v2m−1, v2m)} ∪ {(v0, v1), (v2, v3), . . . , (v2m, v2m+1)}

Then M ′ is a matching in G and |M ′| = |M |+ 1. Thus M is not a maximum matching.

We will prove the converse by proving the contraposition. Assume thatM is not a maximum
matching. Let M ′ be a maximum matching in G. Then |M ′| > |M |. Set H = G[M ⊕M ′].
Figure 9 illustrates this operation. Observe that every vertex in H has either degree one
or degree two in H, since it can be incident with at most one edge of M and one edge of
M ′. Thus each component of H is either an even cycle with edges alternating in M and
M ′ or else a path with edges alternating in M and M ′. Since |M ′| > |M |, H contains more
edges of M ′ than of M , and H must contain a component which is a path, P , that starts
and ends with edges in M ′. Since the start vertex and end vertex of P are M ′-saturated
in H they must be M -unsaturated in G. Thus, P is an M -augmenting path in G. This
completes the proof.

Matching in Bipartite Graphs

An independent set of a graph is a set of pair-wise non-adjacent vertices. A bipartite graph,
(U, V,E), is a graph whose vertex set is U ∪ V and for each edge e = (u, v) ∈ E, u ∈ U
and v ∈ V . In other words, U and V are independent sets and each edge in E connects a
vertex in U to a vertex in V .

Now consider the following scenario. There is a set of girls and a set of boys. Each
girl likes some boys and dislikes others. What conditions would guarantee that each girl
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(a) (b) (c)

Figure 9: (a) a graph G with a matching M represented by the bold edges, (b) the dashed
edges represent a matching M ′ in G, (c) G[M ⊕M ′]

is paired-up with a boy that she likes and that no two girls are paired-up with the same boy.

We can model this situation using a bipartite graph, (X,Y,E), where each vertex in X
represents a girl, each vertex in Y represents a boy and and edge (g, b) ∈ E means that girl
g likes boy b. We are interested in the conditions that would guarantee a matching that
saturates every vertex in X.

Hall’s theorem gives the necessary and sufficient conditions for the existence of such match-
ings in bipartite graphs.

Example. [Hall’s Theorem] Let G = (X,Y,E) be a bipartite graph. For any set S of
vertices, let NG(S) be the set of vertices adjacent to vertices in S. Prove that G contains a
matching that saturates every vertex in X iff |NG(S)| ≥ |S|, ∀S ⊆ X. The condition “For
all S ⊆ X, |N(S)| ≥ |S|” is called Hall’s condition.

Solution. We prove that Hall’s condition is necessary as follows. Suppose G contains a
matching M that saturates every vertex in X. Let S be a subset of X. Since each vertex
in S is matched under M to a distinct vertex in NG(S), |NG(S)| ≥ |S|.

We will now prove the sufficiency of Hall’s conditon, i.e., if |NG(S)| ≥ |S|,∀S ⊆ X then G
contains a matching that saturates every vertex in X. We prove this by induction on the
size of X.

Base Case: |X| = 1. If the only vertex in X is connected to at least one vertex in Y then
clearly a matching exists.
Induction Hypothesis: Assume that Hall’s condition is sufficient when |X| = j, for all j
such that 1 ≤ j ≤ k.
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Induction Step: We want to prove that the sufficiency of Hall’s condition when |X| = k+1.
Let G = (X,Y,E) be a graph with k + 1 vertices in X such that ∀S ⊆ X, |NG(S)| ≥ |S|.
We consider the following two cases.
Case I: For every non-empty proper subset W ⊂ X, |NG(W )| > |W |. In this case, we
pair-up an arbitrary vertex x ∈ X with one of its neighbors, say y ∈ Y . Now consider the
subgraph G′ = (X ′, Y ′, E′), where X ′ = X \ {x}, Y ′ = Y \ {y}, and E′ = E \ {(x, y)}).
After the removal of y, the neighborhood of any subset, S′ ⊆ X ′ in G′ is at most one less
than its neighborhood in G. But since |NG(S′)| > |S′|, after removal of y, it must be that
|NG′(S

′)| ≥ |S′|. Thus, Hall’s condition holds for G′. By induction hypothesis, G′ contains
a matching M ′ that saturates every vertex in X ′. Hence, M ′ ∪ {(x, y)} is a matching that
saturates every vertex in X.
Case II: For some non-empty proper subset W ⊂ X, |N(W )| = |W |. For all S′ ⊆ W ,
we have NG(S′) ⊆ NG(W ). Hence, Hall’s condition holds for the subgraph induced by
W ∪ N(W ). By induction hypothesis, there is a matching M1 that matches every vertex
in W to a vertex in NG(W ). Note that M1 is a perfect matching. Consider the subgraph
G′ = (X ′, Y ′, E′), where X ′ = X \ W , Y ′ = Y \ N(W ), and E′ consists of all edges
between X ′ and Y ′. If we can prove that Hall’s condition holds for G′ then by induction
hypothesis, G′ has a matching M2 that saturates every vertex in X ′. Then, M1 ∪M2 is
clearly a matching in G that saturates every vertex in X. It now remains to prove that
∀T ⊆ X ′, |NG′(T )| ≥ |T |. Note that NG(W ∪ T ) = NG(W ) ∪NG′(T ), |NG(W )| = |W |, W
and T are disjoint, and NG(W ) and NG′(T ) are disjoint. Then,

|NG(W ∪ T )| ≥ |W ∪ T | (follows because ∀S ⊆ X, |NG(S)| ≥ |S|)
|NG(W )|+ |NG′(T )| ≥ |W |+ |T |

|W |+ |NG′(T )| ≥ |W |+ |T |
|NG′(T )| ≥ |T |

This proves the sufficiency of Hall’s condition.
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Relations and Functions

Relations

A binary relation is a set of ordered pairs. For example, let R = {(1, 2), (2, 3), (5, 4)}. Then
since (1, 2) ∈ R, we say that 1 is related to 2 by relation R. We denote this by 1R 2.
Similarly, since (4, 7) 6∈ R, 4 is not related to 7 by relation R, denoted by 4 6R 7.

A binary relation R from set A to set B is a subset of the cartesian product A × B.
When A = B, we say that R is a relation on set A.

Example. Let A = {1, 2, 3, 4} and B = {a, b, c}. Consider the following relations.

R1 = {(1, 1), (1, 2), (2, 2), (2, 3)}
R2 = {(1, 2), (2, 3), (3, 4), (4, 1), (4, 4)}
R3 = {(1, a), (2, a), (3, b), (4, c)}
R4 = {(a, 1), (a, 3), (a, 4), (c, 1)}
R5 = {(a, a), (a, b), (1, c)}

R1 and R2 are relations on A. R3 is a relation from A to B. R4 is a relation from B to A.
R5 is not a relation on sets A and B and it is neither a relation from A to B nor a relation
from B to A.

Below are some more examples of relations.

• If S is a set then “is a subset of “, ⊆ is a relation on P(S), the power set of S.

• “is a student in” is a relation from the set of students to the set of courses.

• “=” is a relation on Z.

• “has a path in G to” is a relation on V (G), the set of vertices in G.

Example. How many relations are there on a set of n elements?

Solution. Note that |A × A| = n2. Since any subset of A × A is a relation on A, the
number of possible relations is the cardinality of the power set of A×A, which is 2n

2
.

Properties of Relations

Let R be a relation defined on set A. We say that R is

• reflexive, if for all x ∈ A, (x, x) ∈ R.

• irreflexive, if for all x ∈ A, (x, x) 6∈ R.

• symmetric, if for all x, y ∈ A, (x, y) ∈ R =⇒ (y, x) ∈ R.
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• antisymmetric, if for all x, y ∈ A, xR y and y Rx =⇒ x = y.

• transitive, if for all x, y, z ∈ A, xR y and y R z =⇒ xR z.

Note that the terms symmetric and antisymmetric are not opposites. A relation may be
both symmetric and antisymmetric or can neither be symmetric nor be antisymmetric.

Example. What are the properties of the following relations?

R1 : equality relation on Z.
R2 : “is a sibling of” relation on the set of all people.

R3 : “ ≤ ” relation on Z.
R4 : “ < ” relation on Z.
R5 : “|” relation on Z+.

R6 : “|” relation on Z.
R7 : “ ⊆ ” relation on the power set of a set S.

R8 : {(x, y) ∈ R2 : |x− y| < ε}, where ε = 0.001

Solution.

Reflexive : R1, R3, R5, R7, R8

Irreflexive : R2, R4

Symmetric : R1, R2, R8

Antisymmetric : R1, R3, R4, R5, R7

Transitive : R1, R3, R4, R5, R6, R7

Note that R6 is not reflexive because (0, 0) 6∈ R6; it is not antisymmetric because for any
integer a, a| − a and −a|a, but a 6= −a. R2 is not transitive because x and z could be the
same person. Observe that R6 is an example of a relation that is neither symmetric nor
antisymmetric. R1 is an example of a relation that is symmetric and antisymmetric.

Example. How many reflexive relations are there on a set A of size n?

Solution. We know that R ⊆ A × A. The procedure of constructing a reflexive relation
R is as follows:

Step 1: From A×A, include in R all ordered pairs of the form (a, a).
Step 2: For every ordered pair in A×A of the form (a, b), where a 6= b, choose
whether to include it in R or not.

There is one way to do Step 1 and 2n(n−1) ways to do Step 2. By the multiplication rule,
the number of reflexive relations on a set n elements is 2n(n−1).
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Equivalence Relations

A relation R on a set A is an equivalence relation if and only if it is reflexive, symmetric
and transitive.

Example Let m be a positive integer. Show that the congruent modulo m relation

R = {(a, b) : a ≡ b (mod m)}

is an equivalence relation on the set of integers.
(If m is a positive integer then integers x and y are congruent modulo m, written as x ≡ y
(mod m), if m|(x− y)).

Solution. To show that R is an equivalence relation we need to show that it is reflexive,
symmetric, and transitive. R is reflexive because a− a = 0, and 0 = m · 0. R is symmetric
because if a ≡ b (mod m), it means that a−b = m·k, for some integer k. Thus b−a = m(−k)
and hence (b, a) ∈ R. To show that R is transitive, suppose that that a ≡ b (mod m) and
b ≡ c (mod m). Thus, for some integers q1 and q2, we have a−b = m(q1) and b−c = m(q2).
Adding these two equations, we get a− c = m(q1 + q2) and thus a ≡ c (mod m). Hence R
is transitive.

Example. Suppose that R is the relation on the set of strings of English letters such that
aR b if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence
relation?

Solution. R is reflexive as l(a) = l(a), for any string a, and hence aRa. Next, suppose
that aR b. This means that l(a) = l(b) and hence l(b) = l(a). Thus bR a and hence R is
symmetric. Finally, suppose that aR b and bR c. Thus l(a) = l(b) and l(b) = l(c), which
implies that l(a) = l(c). Hence aR c and R is transitive. Since R is reflexive, symmetric,
and transitive, it is an equivalence relation.

Equivalence Classes

Let R be an equivalence relation on a set A and let a ∈ A. The equivalence class of a,
denoted by [a]R

2, is the set of all elements of A related (by R) to a; that is

[a]R = {x ∈ A | aRx}

If b ∈ [a]R, then b is called the representative of this equivalence class. Any element in a
class can be used as a representative of the class.

Example. Let R be an equivalence relation on a set A. Then the following statements
for elements a, b ∈ A are equivalent

(i) b ∈ [a] (ii) [a] = [b] (iii) [a] ∩ [b] 6= ∅
2The subscript R in [a]R is dropped when the relation in reference is clear from the context.
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Solution. We will prove (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i).
(i) =⇒ (ii): We will prove the claim by showing that when b ∈ [a], [a] ⊆ [b] and [b] ⊆ [a].
Let c be any arbitrary but particular element in [a]. By definition, aR c. Since b ∈ [a], it
means that aR b, which further implies bR a (since R is symmetric). Since R is transitive
and we know that bR a and aR c, we have bR c and thus c ∈ [b]. We have thus proved that
[a] ⊆ [b].

Let d ∈ [b]. By definition, bR d. We also know that aR b. Since R is transitive, aR b
and bR d, we have aRd. Thus, by definition, d ∈ [a]. We have thus proved that [b] ⊆ [a].

(ii) =⇒ (iii): To prove this we just need to show that [a] 6= ∅. Since R is reflexive, we know
that a ∈ [a]. Since [a] = [b] and [a] is non-empty, it follows that [a] ∩ [b] 6= ∅.

(iii) =⇒ (i): Let c ∈ [a] ∩ [b]. Thus aR c and bR c. Since R is symmetric, we have cR b.
Since R is transitive, aR c and cR b, we have aR b. By, definition b ∈ [a].

Example. Let R be an equivalence relation on a set A. Then the set {[a]R | a ∈ A}
is a partition of the set A. Each element of the set is called an equivalence class of R.
Conversely, given a partition {Ai} of the set A, there is an equivalence relation R that has
sets Ai as its equivalence classes.

Solution. Since each element a ∈ A is in its own equivalent class [a], each equivalent
class is non-empty and

⋃
a∈A[a] = A. From the claim in the previous example (example we

did in last class), for any two elements a and b in A, [a] and [b] are either equal or disjoint.
Thus the equivalent classes partition the set A.

We now prove the converse. Let R be the relation on A that contains all possible pairs
(x, y), where x and y belong to the same subset Ai in the partition. We want to show that
R is reflexive, symmetric and transitive. R is reflexive as any element a ∈ A is in the same
subset of the partition as itself. Next suppose that aR b. This means that a and b are
in the same subset of the partition of A. Thus, we have bR a and hence R is symmetric.
Finally, suppose that aR b and bR c. This means that a and b are in the same subset of
the partition and so are b and c. This means that a and c are in the same subset of the
partition and hence we have aR c. Thus R is transitive.

Example. If an equivalence relation R is defined by the following set partition on A, then
express R as a set of ordered pairs.

A = {3, 4, 1} ∪ {2}

Solution.

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (1, 4), (3, 1), (3, 4), (4, 3), (4, 1)}
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Representing Relations Using Directed Graphs

A directed graph, or digraph G = (V,E) consists of a set V of vertices and a subset E ⊆ V×V
of edges or arcs. An edge of the form (u, u) is represented as an arc from u to itself.

A binary relation R on a set A can be represented as a directed graph in which the
vertices represent the elements of A and for every ordered pair (a, b) ∈ R, there is an
edge from vertex a to vertex b. For example, the digraph corresponding to the relation
R = {(1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 2), (4, 3)} on the set {1, 2, 3, 4} is shown below.

1 2

34

The directed graph G representing a relation R can be used to determine properties of
the relation R. R is reflexive iff G contains a self-loop at every vertex. R is symmetric iff
for each edge (a, b) (a 6= b) in G, there is also an edge (b, a) in G. R is antisymmetric iff
for any two distinct vertices a, b there are no edges between them or exactly one of (a, b) or
(b, a) is in G. Thus R is antisymmetric iff for any two distinct vertices a and b, both (a, b)
and (b, a) are not present in G. The relation R is transitive iff edge (u,w) always exists
whenever there is an edge (u, v) and (v, w), for some vertex v.

Operations on Relations

We can take a relation or a pair of relations and produce a new relation. Since a relation R
from set A to set B is a subset of A×B, operations that apply to sets apply to relations.

Example. Let A = {1, 2, 3} and B = {a, b, c, d}. Let R1 = {(1, a), (1, c), (2, c), (3, a)}.
Let R2 = {(1, b), (1, c), (1, d), (2, b)}. Then we have

R1 ∪R2 = {(1, a), (1, b), (1, c), (1, d), (2, b), (2, c), (3, a)}
R1 ∩R2 = {(1, c)}
R1 \R2 = {(1, a), (2, c), (3, a)}
R2 \R1 = {(1, b), (1, d), (2, b)}

Example. Let A and B be the set of all students and the set of all courses at a school,
respectively. Suppose R1 consists of all ordered pairs (a, b), where a is a student who has
taken course b, and R2 consists of all ordered pairs (a, b), where a is a student who requires
course b to graduate. What are the relations R1 ∪ R2, R1 ∩ R2, R1 ⊕ R2, R1 \ R2, and
R2 \R1?
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Solution. R1 ∪R2 consists of all ordered pairs (a, b), where a is a student who has taken
course b or requires course b to graduate.
R1 ∩R2 consists of all ordered pairs (a, b), where a is a student who has taken course b and
requires course b to graduate.
R1 ⊕R2 consists of all ordered pairs (a, b), where a is a student who has taken course b or
requires course b to graduate, but not both.
R1 \R2 consists of all ordered pairs (a, b), where a is a student who has taken course b but
does not require it to graduate.
R2 \ R1 consists of all ordered pairs (a, b), where a is a student who required course b to
graduate but has not taken it.

Inverse Relation

Let R be a relation from A to B. Then the inverse of R, written R−1, is the relation from
B to A defined by

R−1 = {(b, a) | (a, b) ∈ R}

Example. Let A = {a, b, c} and let R = {(a, a), (a, b), (b, a), (c, a)}. Then

R−1 = {(a, a), (b, a), (a, b), (a, c)}

Note that R and R−1 are almost equal.

Example. A relation R on a set A is symmetric iff R = R−1.

Solution. ( =⇒ ) Suppose R is symmetric on A. We will prove that R = R−1 by showing
that R ⊆ R−1 and R−1 ⊆ R. We will prove R ⊆ R−1 by showing that an arbitrary element
(a, b) ∈ R is also in R−1. Since R is symmetric, (b, a) ∈ R. By definition of R−1, since
(b, a) ∈ R, it must be that (a, b) ∈ R−1. To prove R−1 ⊆ R, we will show that an arbitrary
element (a, b) ∈ R−1 is also in R. By definition of R−1, it must be that (b, a) ∈ R. Since R
is symmetric, (a, b) must also be in R.
(⇐= ) Suppose that R = R−1. Let (a, b) be an arbitrary ordered pair in R. To prove that
R is symmetric we need to show that (b, a) ∈ R. By definition of R−1, (b, a) ∈ R−1. Since
R = R−1, R must contain (b, a).

Composition of Relations

Let R be a relation from A to B and S be a relation from B to C. The composition of S
with R is the relation from A to C:

S ◦R = {(x, z) | there exists a y ∈ B such that xR y and y S z}
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Example. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {a, b, c}. Let R and S be
relations from A to B and from B to C, respectively, where

R = {(1, 3), (3, 3), (3, 4), (4, 5), (4, 6)}
S = {(3, b), (4, a), (4, c), (5, a), (5, b), (6, c)}

What is the composite of the relations R and S?

Solution. S ◦R = {(1, b), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)}

Let R be a relation on a set A. The powers Rn, n = 1, 2, 3, . . . , are defined recursively by

R1 = R and Rn+1 = Rn ◦R

Observe that R2 = R ◦R,R3 = R2 ◦R = (R ◦R) ◦R, and so on.

Example. Let R be a relation on a set A. Then R is transitive iff Rn ⊆ R, for all n ≥ 1.

Solution. We first show that if Rn ⊆ R, for all n ≥ 1, then R is transitive. Note that if
(a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R2. Since R2 ⊆ R, it must be that (a, c) ∈ R, which
means that R is transitive.

We will prove R is transitive =⇒ Rn ⊆ R, for all n ≥ 1, using induction on n.
Induction hypothesis: Assume that if R is transitive then Rk ⊆ R, for some k ≥ 1.
Base Case: The claim holds tivially when n = 1, since R1 = R.
Induction Step: We want to prove the claim when n = k + 1. In other words, we want to

prove that if R is transitive then Rk+1 ⊆ R. We will prove this by showing that an arbitrary
but particular ordered pair (a, b) in Rk+1 is also present in R. By definition, Rk+1 = Rk ◦R.
Since (a, b) ∈ Rk+1, there must be a c, such that (a, c) ∈ R and (c, b) ∈ Rk. We know by
induction hypothesis that Rk ⊆ R, which means that (c, b) ∈ R. Since R is transitive, and
(a, c) ∈ R and (c, b) ∈ R, we have (a, b) ∈ R. This completes the proof.

Functions

Let A and B be sets. A function from A to B is a relation, f , from A to B such that for all
a ∈ A there is exactly one b ∈ B such that (a, b) ∈ f . If (a, b) ∈ f , then we write b = f(a).
A function from A to B is also called a mapping from A to B and we write it as f : A→ B.
The set A is called the domain of f and the set B the codomain. If a ∈ A then the element
b = f(a) is called the image of a under f . The range of f , denoted by Ran(f) is the set

Ran(f) = {b ∈ B | ∃a ∈ A such that b = f(a)}

Two functions are equal if they have the same domain, have the same codomain, and
map each element of the domain to the same element in the codomain.

Example. Let A and B be finite sets of size a and b, respectively. How many functions
are there from A to B?
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Solution. The procedure of forming a function is as follows: in Step i choose the image
of the ith element in A. There are a steps and there are b ways to perform each step. Thus
the total number of ways to create a function from A to B is ba.

Let f : A→ B be a function.

• f is said to be one-to-one or injective, iff for every x, y ∈ A such that x 6= y, f(x) 6=
f(y).

• f is called onto or surjective, iff for every element b ∈ B there is an element a ∈ A
with f(a) = b.

• f is a one-to-one correspondence or bijection, if it is both one-to-one and onto.

Example. Classify the following functions.

• f1(x) = x2 from the set of integers to the set of integers.

• f2(x) = x2 from the set of non-negative real numbers to the set of non-negative real
numbers.

• f3(x) = x+ 1 from the set of integers to the set of integers.

• f4(x) = x from a set A to A. This function is called the identity function.

Solution.

injective : f2, f3, f4

surjective : f2, f3, f4

bijective : f2, f3, f4

Inverse and Composition

Let f be a one-to-one correspondence from the set A to the set B. The inverse function
of f is the function that maps an element b ∈ B to the unique element a ∈ A such that
f(a) = b. The inverse function of f is denoted by f−1. Hence f−1(b) = a when f(a) = b.

Note that if f is not bijective then its inverse does not exist.

Let f : A→ B and g : B → C be functions. The composition of the function g with f
is the function g ◦ f : A→ C, defined by

(g ◦ f)(x) = g(f(x)),∀x ∈ A

Example. Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = c,
and g(c) = a. Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that
f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f with g and what is the
composition of g with f?
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Solution. The composition function f ◦ g is as follows: (f ◦ g)(a) = f(g(a)) = f(b) = 2,
(f ◦ g)(b) = f(g(b)) = f(c) = 1, and (f ◦ g)(c) = f(g(c)) = f(a) = 3.

(g ◦ f) is not defined as the range of f is not a subset of the domain of g.

Example. Let f and g be the functions from the set of integers to the set of integers
defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What
is the composition of g and f?

Solution. (f ◦g)(x) = f(g(x)) = 2(3x+2)+3 = 6x+7. Similarly, (g ◦f)(x) = g(f(x)) =
3(2x+ 3) + 2 = 6x+ 11. This example shows that commutative law does not apply to the
composition of functions.

Example. Let f : A→ B and g : B → C be two functions. Then

i. if f and g are surjective then so is g ◦ f .

ii if f and g are injective then so is g ◦ f .

iii if f and g are bijective then so is g ◦ f .

Solution. Let c ∈ C. Since g is surjective there must be a b ∈ B such that g(b) = c.
Since f is surjective there must be a a ∈ A such that f(a) = b. Thus (g ◦f)(a) = g(f(a)) =
g(b) = c. This proves that g ◦ f is surjective.

Let a, a′ ∈ A such that (g ◦ f)(a) = (g ◦ f)(a′). This means that g(f(a)) = g(f(a′)).
Since g is injective we have f(a) = f(a′). Then since f is injective, we have a = a′.

The bijectivity of (g ◦ f) follows from the injectivity and surjectivity of (g ◦ f).


