
CIS 190: C/C++ Programming

Lecture 1

Introduction and Getting Started

1

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

2

This course will…

• teach you the basics of C and C++

– C will give you more “under the hood” experience

– C++ is more powerful, but gives less control

• give you more programming experience

• enable you to learn more independently

3

This course will not…

• make you an expert in C or C++

• by itself, make you ready to take on a C/C++
programming job, or design and write a
professional C/C++ application

• cover the basics (boolean logic, loops,
recursion, = VS ==, etc.)

4

Lecture/Recitation

• the “lecture” portion is shared by all CIS 19X

• this is the “recitation” – it’s the actual class

– homeworks, projects, and your grade

• there is no required textbook

– stackoverflow.com can be very helpful

5

Grades

• grades are based on:

– homework (70%)

– final project (30%)

• no exams

• grades curved at end of semester

– available throughout semester on Canvas

6

Homeworks

• due roughly weekly

• coding environment is left to you, but
homeworks must run correctly on the
eniac.seas.upenn.edu machines

• challenge problems are optional, but are more
work than the points given might indicate

7

Late Days

• you have 3 late days for use on homeworks

– can use up to 2 days for a single homework

– can’t use late days for project deliverables

• late days take effect immediately after the
due date

• can track how many are left on Canvas

8

Final Project

• timeline of about a month

• design and implement your own choice of
project in C++

• must work in pairs

• past projects include implementations of
Solitaire and Clue, text-based adventures, and
helper apps like to-do lists

9

Policies – Academic Honesty

• all work must be yours

• do not share code with classmates

• do not plagiarize code from the Internet

10

Policies – Coding Style

• coding style/standards are part of industry

• good programmers know how to adhere to a
coding style

• reading the coding style on the webpage is
part of your first homework

11

Policies – Coding Style

• don’t use “magic numbers”

• don’t use global variables

• don’t use while(1) loops

• do comment your code and your files

• do use meaningful names

• do be consistent with your brace style

12

Policies – Attendance

• attendance is not mandatory

• there are significant advantages though:

– ask questions in real time

– input on what topics we cover

– hints and tips for homeworks

13

Policies – Contact

• use the Piazza page for any questions about
the course or assignments

– use “private” questions if you need to post code

– don’t email the TAs/Instructor

• check the website for updates on lectures,
homework, etc.

• Office Hours will be announced soon

14

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

15

Quiz

16

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

17

Word of warning

“C is a language that values speed and
programmer control over guaranteed
safety. You are expected to develop habits
that will keep you safe rather than doing
random things and hoping to be caught.”

– Kate Gregory

18

Basics

• editor

– xemacs, emacs, pico, vim

– setup guide for Windows machines on website

• compiler

– run in terminal; gcc

• using libraries: #include <lib_name.h>

– stdio.h, string.h, stdlib.h, etc.

• C and C++ require main()

19

hello_world.c

#include <stdio.h>

int main()

{

 printf(“Hello world!\n”);

 return 0;

}

20
LIVECODING LIVECODING

Compiling with C: gcc

• to compile a file to an executable called hello:

 gcc hello_world.c –o hello

• to run the executable output:

 ./hello

• to compile a file with warnings:

 gcc hello_world.c –Wall

 -o hello

21

LIVECODING LIVECODING

Anatomy of hello_world.c

/* includes functions from the

 standard library, like printf */

#include <stdio.h>

/* main – entry point to our program */

int main()

{

 /* prints “Hello World!” and a newline to screen*/

 printf(“Hello world!\n”);

 /* returns the result code for the

 program – 0 means there was no error */

 return 0;

}

22

LIVECODING LIVECODING

Variable types in C

• cannot assume variables will be initialized

• variables available in C:

– int, char, float , double, etc.

– long/short, signed/unsigned, etc.

• not available in C:

– boolean, String

23

printf

 printf(“format string”, <arguments>);

– prints the given format string to the console

• “format string” is text you want to
print and specifiers (like %s) for additional
arguments

• the <arguments> are handled in order

24

printf format string specifiers

• some of the basic ones:

– %d : int (e.g., 7)

– %c : char (e.g., ‘a’)

– %s : string (e.g., “hello”)

– %f : float (e.g., 6.5)

25

printf example

• unlike System.out.println, you
need to insert line breaks manually: \n

printf(“It was %f %s at %d%c.\n”,

 72.5, “degrees”, 221, ‘B’);

> It was 72.5 degrees at 221B.

26

Precision with printf

• printf can also format the text it prints out:

printf(“_%5d_ or %4s or _%-3s_”,

 18, “dog”, “a”);

> _ 18_ or _ dog_ or _a _

• spaces used to pad out any extra characters

• use a negative sign to left-align

27

Precision with printf

• for floats/doubles, you can specify precision
for both before and after the decimal: %3.6f

• place the precision number right after the %

printf(“your grade is: %2.3f”,

 92.3333333);

> your grade is: 92.333

 28

scanf

• reads information from the console (user)

• need to know details about input (formatting)

• ignores whitespace characters

– spaces, tabs, newlines

• uses same specifiers as printf (%d, %s, etc.)

29

Storing information from scanf

• information read in is stored in a variable

/* int, float, and char take pointers */

scanf(“%d”, &int_var);

scanf(“%f”, &float_var);

/* char does not do a good job of

 skipping whitespace */

scanf(“ %c”, &char_var);

/* string does not take a pointer */

scanf(“%s”, string_var);

30

scanf example

int x;

printf(“Enter value for x: ”);

scanf(“%d”, &x);

printf(“x is %d\n”, x);

> ./a.out

> Enter value for x:

31

scanf example

int x;

printf(“Enter value for x: ”);

scanf(“%d”, &x);

printf(“x is %d\n”, x);

> ./a.out

> Enter value for x: 18

32

scanf example

int x;

printf(“Enter value for x: ”);

scanf(“%d”, &x);

printf(“x is %d\n”, x);

> ./a.out

> Enter value for x: 18

> x is 18

33

Arrays in C

• Declaration:
<type> <name> [size];

float xArray [10];

• Indexing starts at 0:
xArray[9]; /* end of the array */

34

Limitations of Arrays

• no bounds checking

• no built-in knowledge of array size

• can’t return an array from a function

• arrays are static

–once created, their size is fixed

35

Declaring arrays in C

• size needs to be pre-determined at compile
time

• for example, this means you cannot make it a
value that is read in from the user

• unless you allocate the memory manually
(which we’ll cover in later lectures)

36

for loops and local variables

• for loops work as expected, but local variables
must be declared at the start of the function

int i;

for (i = 0; i < 13; i++) {

 printf(“%d ”, i);

}

> 0 1 2 3 4 5 6 7 8 9 10 11 12

37

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

38

Sieve of Eratosthenes

• algorithm to quickly identify prime numbers

• before starting, choose the highest number
you’d like to check for being prime

• assume all numbers >= 2 are prime numbers

• for each prime number you encounter, mark
all of its multiples as composite (not prime)

39

EXAMPLE: Sieve of Eratosthenes

• first, assume all numbers >= 2 are prime:

X X 2 3 4 5 6 7 8 9 10 11 12 13

• then, take the first prime number and mark all
of its multiples as composite:

0 1 2 3 X 5 X 7 X 9 X 11 X 13

• and so on:

0 1 2 3 4 5 X 7 8 X 10 11 X 13

40
LIVECODING LIVECODING

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

41

Functions in C

• <return value> <name> (<parameters>)

– no “public” or “static” necessary

• there are 3 “parts” to using a function in C:

– function prototype

– function definition

– function call

42

Function Parts

• prototype:

– function must be declared before it can be used
int SquareNumber (int n);

• definition:

– function must be defined
int SquareNumber (int n) {

 return (n * n); }

• call:
int answer = SquareNumber(3);

43

Functions in hello_world.c

#include <stdio.h>

void PrintHelloWorld(); /* function prototype */

int main()

{

 PrintHelloWorld(); /* function call */

 return 0;

}

void PrintHelloWorld() /* function definition */

{

 printf(“Hello world!\n”);

}

44
LIVECODING LIVECODING

C-style strings

• there is no native “String” type in C

• instead, strings in C are represented
as an array of characters

– terminated by the NULL character, ‘\0’

– (backslash zero)

45

Declaring C-style strings

• three ways to (statically) declare a string
char *str1 = “dog”;

char str2 [] = “cat”;

char str3 [5];

• first two ways require initial value; length is
set at that initial string’s length (i.e., 4)

• third way creates string of length 5

46

C strings are arrays of characters

char *str1 = “dog”;

element 0 1 2 3

char

char str2 [] = “cat”;

element 0 1 2 3

char

char str3 [5];

element 0 1 2 3 4

char

47

C strings are arrays of characters

char *str1 = “dog”;

element 0 1 2 3

char ‘d’ ‘o’ ‘g’ ‘\0’

char str2 [] = “cat”;

element 0 1 2 3

char ‘c’ ‘a’ ‘t’ ‘\0’

char str3 [5];

element 0 1 2 3 4

char

48

C strings are arrays of characters

char *str1 = “dog”;

element 0 1 2 3

char ‘d’ ‘o’ ‘g’ ‘\0’

char str2 [] = “cat”;

element 0 1 2 3

char ‘c’ ‘a’ ‘t’ ‘\0’

char str3 [5];

element 0 1 2 3 4

char

49

C strings are arrays of characters

char *str1 = “dog”;

element 0 1 2 3

char ‘d’ ‘o’ ‘g’ ‘\0’

char str2 [] = “cat”;

element 0 1 2 3

char ‘c’ ‘a’ ‘t’ ‘\0’

char str3 [5];

element 0 1 2 3 4

char ‘.’ ‘N’ ‘=’ ‘¿’ ‘8’

• str3 was only declared, not initialized, so it’s
filled with garbage

50

C strings are arrays of characters

char *str1 = “dog”;

element 0 1 2 3

char ‘d’ ‘o’ ‘g’ ‘\0’

char str2 [] = “cat”;

element 0 1 2 3

char ‘c’ ‘a’ ‘t’ ‘\0’

char str3 [5];

element 0 1 2 3 4

char ‘.’ ‘N’ ‘=’ ‘¿’ ‘8’

• str3 was only declared, not initialized, so it’s
filled with garbage and has no null terminator

51

Terrible C-style string Joke

Two strings walk into a bar.

The bartender says, "What'll it be?"

The first string says, "I'll have a gin and
tonic#MV*()>SDk+!^&@P&]JEA".

The second string says, "You'll have to excuse my
friend, he's not null-terminated."

52

C-style strings are arrays!

• you can’t compare two arrays using ==

• so you can’t compare strings that way either

str1 == str2 will not do what you think

• also can’t assign one array to another using =

• so you can’t assign one string to another

str1 = str2 will not do what you think

53

C-style string library functions

• to use you must #include <string.h>

• strcmp will compare two strings:
int notSame = strcmp(str1, str2);

– returns a “0” if the string are identical, not a 1!

• strcpy will copy the 2nd string into the 1st
strcpy(str1, “success!”);

54

Outline

• Syllabus

• Quiz

• Intro to C Programming

– Basics

– Sieve of Eratosthenes example

– More Basics

• Homework

55

Homework 1

• five things to do:

– complete hello_world.c

– complete answers.txt

– turn the above two files in using turnin

– read the style guide online

– fill out availability for OH on when2meet

• use your upenn username

56

