
CIS 190: C/C++ Programming

Lecture 3

Memory Management in C

1

Any Questions?

2

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

3

Testing

• unit testing

– literal tests to make sure code works as intended

– e.g., TwoPlusTwoEqualFour(...) for an
Addition() function

• edge case testing (or corner case, etc.)

– ensure that code performs correctly with
all (or at least many) possible input values

– e.g., prevent program from accepting invalid input

 4

Simple Testing Example

/* get month from user in integer form */

printf(“Please enter month: “);

scanf(“%d”, &month);

5

Simple Testing Example

/* get month from user in integer form */

printf(“Please enter month: “);

scanf(“%d”, &month);

while (month < JAN_INT || month > DEC_INT)

{

 scanf(“%d”, &month);

}

6

Simple Testing Example

/* get month from user in integer form */

printf(“Please enter month: “);

scanf(“%d”, &month);

while (month < JAN_INT || month > DEC_INT)

{

 printf(“\n%d is an invalid month”, month);

 printf(“please enter between %d and %d:”,

 JAN_INT, DEC_INT);

 scanf(“%d”, &month);

}

7

/* print string up to number given

 by length (or full string,

 whichever is reached first) */

void PrintToLength(char str[],

 int length)

{

 int i;

 for (i = 0; i < length; i++)

 {

 printf(“%c”, str[i]);

 }

} 8

Common Edge Cases

• C-style string

– empty string

– pointer to NULL

– without the \0 terminator

• Integer

– zero

– negative/positive

– below/above the min/max

9

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

10

Memory

• each process gets its own memory chunk,
or address space

Stack

Heap

Global/static vars

Code

0x000000

0xFFFFFFF

4 GB
address
space

Function calls,
locals

Dynamically
allocated
memory

“data segment”

“code segment”
11

Memory

• each process gets its own memory chunk,
or address space

Stack

Heap

Global/static vars

Code

0x000000

0xFFFFFFF

4 GB
address
space

12

Stack Allocation

• memory allocated by the program as it runs

– local variables

– function calls

• fixed at compile time

13

Stack

Heap Allocation

• dynamic memory allocation

– memory allocated at run-time

• two options for allocating memory:
– malloc()

– calloc()

• both require #include <stdlib.h> to work

14

Heap

malloc()

void* malloc (<size to be allocated>)

char *letters;

letters = (char*) malloc(userVariable *

 sizeof(char));

• malloc returns a pointer to a contiguous
block memory of the size requested

15

calloc()

void* calloc (<number of elements>,

 <size of type>)

float *grades;

grades = (float*) calloc(userVariable,

 sizeof(float));

• calloc works very similarly to malloc, but it
initializes all the allocated bits to zero

− takes longer than malloc, so only use if needed

 16

Casting Allocated Memory

• both calloc() and malloc() return a
pointer of type void, so you must cast the
memory to match the given type

letters = (char*) malloc(userVariable *

 sizeof(char));

grades = (float*) calloc(userVariable,

 sizeof(float));

17

Casting Allocated Memory

• both calloc() and malloc() return a
pointer of type void, so you must cast the
memory to match the given type

letters = (char*) malloc(userVariable *

 sizeof(char));

grades = (float*) calloc(userVariable,

 sizeof(float));

18

Handling Allocated Memory

• IMPORTANT: before using allocated memory
make sure it’s actually been allocated

• if memory wasn’t correctly allocated, the
address that is returned will be null

− this means there isn’t a contiguous block of
memory large enough to handle request

19

Exiting in Case of NULL

• if the address returned is null,
your program should exit

− exit() takes an integer value

− non-zero values are used as error codes

if (grades == NULL) {

 printf(“Memory not allocated,

 exiting.\n”);

 exit(-1);

}
20

Managing Your Memory

• stack allocated memory is
automatically freed when
functions return

− including main()

• memory on the heap was
allocated by you – so it
must also be freed by you

21

Stack

Heap

Freeing Memory

• done using the free() function

– free takes a pointer as an argument:

 free(grades);

 free(letters);

• free() does not work recursively

– for each individual allocation, there must be an
individual call to free that allocated memory

– called in a sensible order

 22

Freeing in Order
In what order would you free the

nodes of this linked list?

23

A B C D E

In what order would you free the
nodes of this binary tree?

Freeing in Order

24

A

C B

D F E

H G

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

25

Memory Errors

• when we dynamically allocate memory,
we are handling it directly

• have to be aware of possible errors like:

– accessing off-limits memory

– “losing” memory

– running out of memory

• not common nowadays, except in
some embedded systems

26

Memory Leaks

• memory leaks occur when data is continually
dynamically allocated but not freed

• access to the memory is then “lost”

– for example, a loop that re-allocates memory to
the same variable without freeing

• eventually we will run out of memory, and the
program will crash or forcefully exit

27

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 28

arr

Heap

?

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 29

arr

Heap

i = 0

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 30

arr

Heap

i = 1

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 31

arr

Heap

i = 2

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 32

arr

Heap

i = 3
arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 33

arr

Heap

i = 4 arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 34

arr

Heap

i = 5
arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 35

arr

Heap

i = 5
arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Memory Leak Example

for (i = 0; i < var; i++) {

 arr = (int*) malloc(NUM * sizeof(int));

 /* check if arr == NULL */

}

 36

arr

Heap

i = 5
arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

arr = (int*) malloc(…)

Mistakes When Using free()

• double free

– freeing one pointer twice

–without reallocating memory in-between frees

– can cause a segfault

• dangling pointer

– a pointer that points to freed memory

– trying to access can cause a segfault

37

Segmentation Faults

• segmentation faults occur when you try to
access memory that is off-limits

• segfaults occur during a program’s runtime

– this can make them difficult to debug

38

Common Causes of Segfaults

• accessing out-of-bounds on an array

• accessing the memory address of
uninitialized pointers

• accessing a pointer whose address points
to memory that has been freed

39

C Trying to Be “Nice”

• when it can, C will do its best to shield you
from errors like

– freeing memory twice

– accessing freed memory

– manipulating freed memory

• but not

– using uninitialized memory

40

C Being Nice

• double free memory

– C will let it silently fail (most of the time)

• accessing freed memory

– C will let you do this (most of the time)

– BUT….

41

Killing with Kindness

• the data that was stored there has degraded
or been corrupted when it was freed

• if code is changed so that freed memory is
overwritten by a new “legitimate” allocation

– you will suddenly have errors

– that aren’t caused by the new code

– makes it very difficult to debug

42

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

43

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

44

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

file in which
error occurs

45

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

file in which
error occurs

line number

46

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

file in which
error occurs

line number

character
number

47

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

file in which
error occurs

line number

character
number

degree of severity
‘error’ or ‘warning’

48

Understanding Errors

hw2.c:87:7: error: ‘foo’ undeclared

file in which
error occurs

line number

character
number

error message

49

degree of severity
‘error’ or ‘warning’

#1 Rule of Debugging

• start with the very first error or warning

• recompile every time an error is fixed

– errors will cascade

– and de-cascade when fixed!

50

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

51

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

52

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

• the -Wall flag shows all of warnings

53

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

average.c:5:5: warning: unused variable ‘numStudnts’

average.c:22:17: error: ‘numStudents’ undeclared

average.c:25:13: error: ‘numStudents’ undeclared

54

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

average.c:5:5: warning: unused variable ‘numStudnts’

average.c:22:17: error: ‘numStudents’ undeclared

average.c:25:13: error: ‘numStudents’ undeclared

55

Cascading Errors

int numStudnts;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

average.c:5:5: warning: unused variable ‘numStudnts’

average.c:22:17: error: ‘numStudents’ undeclared

average.c:25:13: error: ‘numStudents’ undeclared

56

Cascading Errors

int numStudents;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

57

Cascading Errors

int numStudents;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

58

Cascading Errors

int numStudents;

for (i = 0; i < numStudents; i++) {

 total += grades[i];

}

avg = total/numStudents;

> gcc –Wall average.c

• got rid of all 3 errors!

59

When Errors Occur

• compile time

– pretty easy (normally typos or simple mistakes)

• linking

– slightly harder (could be easy, could require
rethinking how your code is laid out)

• run time

– UGH (often difficult to pinpoint, and sometimes
hard to spot at all)

– best bet is to use a debugger

60

Common Compiler Errors

hw2.c:87:7: error: ‘foo’ undeclared

• if foo is a variable:

− forgot to declare

− misspelled (on declaration or on use)

• if foo is a function:

− forgot to #include file containing the prototype

− misspelled (on declaration or on use)

61

Common Compiler Errors

hw2.c:37:6: warning: unused variable

 ‘bar’

• variable was declared but not used

– normally because variable declaration has a typo

– if you’re in the midst of writing code, this
warning may be temporarily acceptable

– haven’t had a chance to use the variable yet

62

Common Compiler Errors

hw2.c:54: warning: suggest

 parentheses around assignment

 used as truth value

• often a mistake inside a control statement

– you meant to use == not =

– (you want equivalency, not assignment)

63

Common Compiler Errors

hw2.c: 51: error: expected ‘;’

 before ‘for’

• missing semicolon on previous line of code

• ‘for’ is simply the word directly following the
missing semicolon

– could be ‘int’ or ‘if’ or a variable name, etc

64

Common Linker Errors

hw4.o: In function ‘main’:

hw4.c:91: undefined reference to ‘Fxn’

• linker can’t find code for ‘Fxn’ in any .o file

– forgot to link .o file

– misspelled named of Fxn

– parameter list is different

– differences between prototype/definition/call

 65

Common Linker Errors

/usr/lib64/gcc/[...]/crt1.o: In function

 ‘_start’:

/home/[...]/start.S:119: undefined

 reference to main

– you compiled a file that does not contain a
main()

– without using the -c flag to indicate separate
compilation

66

ABSOLUTELY TERRIFYING ERROR

• (story time!)

67

ABSOLUTELY TERRIFYING ERROR

68

ABSOLUTELY TERRIFYING ERROR

69

Debugging Basics

• if the error’s not clear from just looking at the
code, you can try:

• inserting probe statements with printf

– (but adding a printf might change your error!)

• rubber duck debugging

• Googling the error message

• using a debugger

70

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

71

Debuggers

• see what is going on “inside” the program

– more powerful and accurate than printf() probes

• examine individual variables (value & address)

– can change variable’s value on the fly

• step through code line by line

– can skip blocks of code you don’t want to see

72

Using DDD (or GDB)

• must use the ‘-g’ flag when compiling

• open program for testing using command line:
ddd a.out

gdb hw2

• GDB – Gnu Project Debugger (text based)

• DDD – Data Display Debugger (GUI based)

73
LIVECODING LIVECODING

DDD Basics

• debugger allows you to:

• add breakpoints to stop the program at
specific points

• use ‘print’ or ‘display’ to show values (or
addresses) of variables

• step through code line by line

74
LIVECODING LIVECODING

DDD Tips

• File -> Open Source
– choose a different file to look at (and to set

breakpoints in)

• Source -> Reload Source
– refresh the source you’re using after recompiling

without losing any breakpoints or data displays

• FINISH
– executes the current “frame”

– will pause when it hits a return (outside of main)

75

LIVECODING LIVECODING

DDD Livecoding

• DDD livecoding example was taken wholesale
from the sample session on this page:

http://www.gnu.org/software/ddd/manual/
html_mono/ddd.html

• site also has more information about DDD

76
LIVECODING LIVECODING

http://www.gnu.org/software/ddd/manual/html_mono/ddd.html
http://www.gnu.org/software/ddd/manual/html_mono/ddd.html
http://www.gnu.org/software/ddd/manual/html_mono/ddd.html
http://www.gnu.org/software/ddd/manual/html_mono/ddd.html
http://www.gnu.org/software/ddd/manual/html_mono/ddd.html

Outline

• (from last class) Testing

• Memory allocation

• Memory errors

• Errors

• Debugging

• Homeworks

77

Homework 2

• due tomorrow night @ midnight

• if you haven’t started yet – do it NOW!

78

Homework 3

• Memory Diagrams

• write legibly

• double check your work

• due at BEGINNING of class, on paper

– no late days for this homework!

79

