
CIS 190: C/C++ Programming

Lecture 4

Assorted Topics
(and More on Pointers)

1

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

2

Makefiles

• list of rules you can call from the terminal

– make ruleTwo will call the ruleTwo

– make will call first rule in the file

• basic formatting

– use # at line beginning to denote comments

– must use tab character, not 8 spaces

3

Rule Construction

target: dependencies (optional)

 command

 another command (optional)

• target (rule name)

• dependency (right side of colon)

• command (explicit commands)

4

Creating a Rule

• let’s create a rule to compile and link the files
for Homework 4A:

hw4a.c

karaoke.c

karaoke.h

• what commands will let us do this?

5

Creating a Rule

we need to, in order:

1. separately compile hw4a.c

2. separately compile karaoke.c

3. link hw4a.o and karaoke.o together

6

Creating a Rule

1. separately compile hw4a.c

• we’ll make a rule called hw4a.o

• what command would we run in the terminal?

• what files does it need to work?

7

Creating a Rule

1. separately compile hw4a.c

• we’ll make a rule called hw4a.o

• what command would we run in the terminal?

• what files does it need to work?

– hw4a.c

– so it’s dependent on hw4a.c

8

Creating a Rule

2. separately compile karaoke.c

• we’ll call this rule karaoke.o

• what command will compile karaoke.c?

• what files does it need to work?

9

Creating a Rule

2. separately compile karaoke.c

• we’ll call this rule karaoke.o

• what command will compile karaoke.c?

• what files does it need to work?

– karaoke.c

– so it’s dependent on karaoke.c

10

Creating a Rule

3. link hw4a.o and karaoke.o together

• we’ll call this rule hw4a

• what command will link the files together?

• what files does it depend on?

11

Creating a Rule

3. link hw4a.o and karaoke.o together

• we’ll call this rule hw4a

• what command will link the files together?

• what files does it depend on?

– hw4a.o

– karaoke.o

– so it’s dependent on both of these files

12

Other Common Rules

• a rule to remove .o and executable files
 clean:

 rm –f *.o hw4a

• a rule to remove garbage files
 cleaner:

 rm –f *~

• a rule to run both
 cleanest: clean cleaner

13

Why Use Makefiles

• makes compiling, linking, executing, etc

– easier

– quicker

– less prone to human error

• allows use to create and run helper rules

– clean up unneeded files (like hw2.c~ or trains.o)

– open files for editing

14

Makefiles and Beyond

• there’s much more you can do with Makefiles

– variables

– conditionals

– system configuration

– phony targets

• more information available here

http://www.chemie.fu-berlin.de/chemnet/use
/info/make/make_toc.html

15

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

16

Input and Output

• printf

– stdout

– output written to the terminal

• scanf

– stdin

– input read in from user

• redirection

– executable < input.txt > output.txt

17

FILE I/O Basics

• allow us to read in from and print out to files

– instead of from and to the terminal

• use a file pointer (FILE*) to manage
the file(s) we want to be handling

• naming conventions:

FILE* ofp; /* output file pointer */

FILE* ifp; /* input file pointer */

18

Opening a File

FILE* fopen (<filename>, <mode>);

• fopen() returns a FILE pointer

– hopefully to a successfully opened file

• <filename> is a string

• <mode> is single-character string

 19

FILE I/O Reading and Writing

ifp = fopen(“input.txt”, “r”);

• opens input.txt for reading

– file must already exist

20

FILE I/O Reading and Writing

ifp = fopen(“input.txt”, “r”);

• opens input.txt for reading

– file must already exist

ofp = fopen(“output.txt”, “w”);

• opens output.txt for writing

– if file exists, it will be overwritten

21

FILE I/O Reading and Writing

ifp = fopen(“input.txt”, “r”);

• opens input.txt for reading

– file must already exist

ofp = fopen(“output.txt”, “w”);

• opens output.txt for writing

– if file exists, it will be overwritten

22

Dealing with FILE Pointers

• FILE pointers should be handled with the
same care as allocated memory

1. check that it works before using

2. gracefully handle failure

3. free when finished

23

Handling FILE Pointers

1. check that it worked before using

• if the FILE pointer is NULL, there was an error

2. gracefully handle failure

• print out an error message

• exit or re-prompt the user, as appropriate

3. free the pointer when finished

• use fclose() and pass in the file pointer

 24

Standard Streams in C

• three standard streams: stdin, stdout, stderr

• printf() and scanf() automatically access
stdout and stdin, respectively

• printing to stderr prints to the terminal

– even if we use redirection

25

Using File Pointers

• fprintf
fprintf(ofp, “print: %s\n”, textStr);

– output written to where ofp points

• fscanf
fscanf(ifp, “%d”, &inputInt);

– input read in from where ifp points

26
LIVECODING LIVECODING

Using stderr with fprintf

/* if an error occurs */

if (error)

{

 fprintf(stderr,

 “An error occurred!”);

 exit(-1);

 /* exit() requires <stdlib.h> */

}

27

LIVECODING LIVECODING

Reaching EOF with fscanf

• fscanf() returns an integer

– number of items in argument list that were filled

• if no data is read in, it returns EOF

– EOF = End Of File (pre-defined)

• once EOF is returned, we have reached the
end of the file

– handle appropriately (e.g., close)

28
LIVECODING LIVECODING

Reaching EOF Example

• example usage:
while (fscanf(ifp, “%s”, str) != EOF)

{

 /* do things */

}

 /* while loop exited, EOF reached */

• to use fscanf() effectively, it helps to know
basic information about the layout of the file

29
LIVECODING LIVECODING

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

30

Giving Command Line Arguments

• command line arguments are given after the
executable name on the command line

– allows user to change parameters at run time
without recompiling or needing access to code

– also sometimes called CLAs

• for example, the following might allow a user
to set the maximum number of train cars:

> ./hw2 25

 31

Handling Command Line Arguments

• handled as parameters to main() function
int main(int argc, char **argv)

• int argc – number of arguments

– including name of executable

• char **argv – array of argument strings

32

More About argc/argv

• names are by convention, not required

• char **argv can also be written as
 char *argv[]

• argv is just an array of strings (the arguments)

• for example, argv[0] is the executable

− since that is the first argument passed in

33

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

34

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

• in this example:

– argc = ???

– argv[0] is ???

– argv[1] is ???

– argv[2] is ???

35

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

• in this example:

– argc = 3 (executable, number, and city)

36

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

• in this example:

– argc = 3 (executable, number, and city)

– argv[0] is “./hw2”

37

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

• in this example:

– argc = 3 (executable, number, and city)

– argv[0] is “./hw2”

– argv[1] is “25”

38

Command Line Argument Example

> ./hw2 25 Savannah

– set max # of cars and a departure city

• in this example:

– argc = 3 (executable, number, and city)

– argv[0] is “./hw2”

– argv[1] is “25”

– argv[2] is “Savannah”

39

How to Use argc

• before we begin using CLAs, we need to make
sure that we have been given what we expect

• check that the value of argc is correct

– that the number of arguments is correct

• if it’s not correct, exit and prompt user
with expected program usage

40
LIVECODING LIVECODING

How to Use argv

• char **argv is an array of strings

• if an argument needs to be an integer, we
must convert it from a string

– using the atoi() function (from <stdlib.h>)

intArg = atoi(“5”);

intArg = atoi(argv[2]);

41
LIVECODING LIVECODING

Optional Command Line Arguments

• argument(s) can optional

– e.g., default train to size 20 if max size not given

• number of acceptable CLAs is now a range, or
at least a minimum number

• should only use the CLAs you actually have

42

Handling Optional CLAs

if (argc > MAX_ARGS) {

 /* print out error message */

 exit(-1);

}

if (argc >= SIZE_ARG+1) {

 trainSize = argv[SIZE_ARG];

} else {

 trainSize = DEFAULT_TRAIN_SIZE;

}
43

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

44

Random Numbers

• useful for many things:

– cryptography, games of chance & probability,
procedural generation, statistical sampling

• random numbers generated via computer
can only be pseudorandom

45

Pseudo Randomness

• “Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.” – John von Neumann

• pseudorandom

– appears to be random, but actually isn’t

– mathematically generated, so it can’t be

46

Seeding for Randomness

• you can seed the random number generator

• same seed means same “random” numbers

– good for testing, allow identical runs

void srand (unsigned int seed);

srand(1);

srand(seedValue);

47

Seeding with User Input

• can allow the user to choose the seed

– gives user more control over how program runs

 srand(userSeedChoice);

• obtain user seed choice via

– in-program prompt (“Please enter seed: ”)

– as a command line argument

• can make this an optional CLA

48

Seeding with Time

• can also give a “unique” seed with time()

– need to #include <time.h> library

• time() returns the seconds since the “epoch”

– normally since 00:00 hours, Jan 1, 1970 UTC

• NOTE: if you want to use the time() function,
you can not have a variable called time
error: called object ‘time’ is not a function

49

Example of Seeding with time()

• get the seconds since epoch
int timeSeed = (int) time(0);

– time() wants a pointer, so just give it 0

– returns a time_t object, so we cast as int

• use timeSeed to seed the rand() function

srand(timeSeed);

• NOTE: running again within a second will
return the same value from time()

 50

Generating Random Numbers

int rand (void);

• call the rand() function each time you want a
random number

 int randomNum = rand();

• integer returned is between 0 and RAND_MAX

– RAND_MAX guaranteed to be at least 32767

 51

Getting a Usable Random Number

• if we want a smaller range than 0 - 32767?

• use % (mod) to get the range you want

/* 1 to MAX */

int random = (rand() % MAX) + 1;

/* returns MIN to MAX, inclusive */

int random = rand() % (MAX – MIN + 1) + MIN;

52

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

53

Why Pointers Again?

• important programming concept

• understand what’s going on “inside”

• other languages use pointers heavily

– you just don’t see them!

• but pointers can be difficult to understand

– abstract concept

– unlike what you’ve learned before

54

Memory Basics – Regular Variables

• all variables have two parts:

– value

5

55

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

0xFFC0 5

56

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

• x’s value is 5

0xFFC0 5

value

57

Memory Basics – Regular Variables

• all variables have two parts:

– value

– address where value is stored

• x’s value is 5

• x’s address is 0xFFC0

0xFFC0 5

value address

58

Memory Basics – Regular Variables

• so the code to declare this is:
int x = 5;

0xFFC0 5

value address

59

Memory Basics – Regular Variables

• we can also declare a pointer:
int x = 5;

int *ptr;

0xFFC0 5

value address

60

Memory Basics – Regular Variables

• and set it equal to the address of x:

int x = 5;

int *ptr;

ptr = &x;

0xFFC0 5

value address

61

Memory Basics – Regular Variables

• ptr = &x

0xFFC0 5

value address

62

Memory Basics – Regular Variables

• ptr = &x

• *ptr = x

 0xFFC0 5

value address

63

Memory Basics – Regular Variables

• ptr points to the address where x is stored

• *ptr gives us the value of x

– (dereferencing ptr)

 0xFFC0 5

value address

64

Memory Basics – Pointer Variables

• but what about the variable ptr?

– does it have a value and address too?

0xFFC0 5

value address

65

Memory Basics – Pointer Variables

• but what about the variable ptr?

– does it have a value and address too?

• YES!!!

 0xFFC0 5

value address

66

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – and it’s 0xFFC0

0xFFC0 5

value address

67

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – and it’s 0xFFC0

0xFFC0 5

value address

0xFFC0

value

68

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – and it’s 0xFFC0

• but what about its address?

0xFFC0 5

value address

0xFFC0

value

69

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – and it’s 0xFFC0

• but what about its address?

– its address is &ptr

0xFFC0 5

value address

0xFFC0

value

70

Memory Basics – Pointer Variables

• ptr’s value is just “ptr” – and it’s 0xFFC0

• but what about its address?

– its address is &ptr

0xFFC0 5

value address

0xFFC4 0xFFC0

value address

71

Memory Basics – Pointer Variables

• if you want, you can think of value and
address for pointers as this instead…

0xFFC0 5

value address

0xFFC4 0xFFC0

value address

72

Memory Basics – Pointer Variables

• address where it’s stored in memory

0xFFC0 5

value address

0xFFC4 0xFFC0

value address
where it’s
stored in
memory

73

Memory Basics – Pointer Variables

• address where it’s stored in memory

• value where it points to in memory

0xFFC0 5

value address

0xFFC4 0xFFC0

value
where it

points to in
memory

address
where it’s
stored in
memory

74

Memory Basics – “Owning” Memory

• each process gets its own memory chunk,
or address space

Stack

Heap

Global/static vars

Code

0x000000

0xFFFFFFF

4 GB
address
space

Function calls,
locals

Dynamically
allocated
memory

“data segment”

“code segment”
75

Memory Basics – “Owning” Memory

• you can think of memory as being “owned” by:
– the OS

• most of the memory the computer has

– the process
• a chunk of memory given by the OS – about 4 GB

– the program
• memory (on the stack) given to it by the process

– you
• when you dynamically allocate memory in the program

(memory given to you by the process)

76

Memory Basics – “Owning” Memory

• the Operating System has a very large amount
of memory available to it

the OS the OS the OS the OS

77

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

the OS the OS

the OS Stack

Heap

Global/static vars

Code
78

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

Stack

Heap

Global/static vars

Code
79

Memory Basics – “Owning” Memory

• when the process begins, the Operating
System gives it a chunk of that memory

Stack

Heap

Global/static vars

Code
80

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

 Stack

Heap

Global/static vars

Code
81

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

 Stack

Heap

82

Memory Basics – “Owning” Memory

• within that chunk of memory, only the stack
and the heap are available to you and
 the program

Stack

Heap

83

Memory Basics – “Owning” Memory

• some parts of the stack are given to
the program for variables

Stack

Heap

84

Memory Basics – “Owning” Memory

• some parts of the stack are given to
the program for variables

Stack

Heap

program variables

85

Memory Basics – “Owning” Memory

• and when a function is called, the program is
given more space on the stack for the return
address and in-function
variables

 Stack

Heap

program variables

function return address & variables

86

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

program variables

function return address & variables

87

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

CAR* train;

char* userStr;

int* intArray;

Stack

Heap

program variables

function return address & variables

88

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

CAR* train;

char* userStr;

int* intArray;

Stack

Heap

program variables

function return address & variables

intArray

train

userStr

?

?

?
89

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

program variables

function return address & variables

intArray

train

userStr

?

?

90

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

?

91

Memory Basics – “Owning” Memory

• and every time you allocate memory, the
process gives you space for it on the heap

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

92

(also program
variables)

Memory Basics – “Owning” Memory

• don’t forget – those pointers are program
variables, so where they are stored is actually
on the stack with the rest
of the program variables!

– they are program variables
because they are declared
in the program’s code

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

93

(also program
variables)

Memory Basics – “Returning” Memory

• but how does the process get any of that
memory back?

Stack

Heap

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

program variables

function return address & variables

intArray

userStr

train

94

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

95

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

return fxnAnswer;

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

96

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

return fxnAnswer;

Stack

Heap

program variables

function return address & variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

97

(also program
variables)

Memory Basics – “Returning” Memory

• when a function returns, the program gives
that memory on the stack back to the process

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

98

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

99

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

free(intArray);

Stack

Heap

program variables

intArray

userStr

train

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

100

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

free(intArray);

Stack

Heap

program variables

intArray = (int*) malloc(…)

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

intArray

userStr

train

101

(also program
variables)

Memory Basics – “Returning” Memory

• and when you use free(), the memory you had
on the heap is given back to the process

Stack

Heap

program variables

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

userStr

train

intArray
102

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

103

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

• it still points to that space
in memory

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

104

(also program
variables)

Memory Basics – Memory Errors

• but simply using free() doesn’t change
anything about the intArray variable

• it still points to that space
in memory

• it’s still stored on the stack
with the rest of the variables

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

105

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

106

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

107

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

108

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

109

(also program
variables)

Memory Basics – Memory Errors

• intArray is now a dangling pointer

– points to memory that has been freed

– memory which is now back
to being owned by
the process, not you Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

110

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

111

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

112

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

• to prevent segfaults,
good programming practices
dictate that after free()ing,
we set intArray to
be equal to

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

113

(also program
variables)

Memory Basics – Memory Errors

• if we tried to free() intArray’s memory again

• we would get a

• to prevent segfaults,
good programming practices
dictate that after free()ing,
we set intArray to
be equal to

Stack

Heap

program variables

userStr

train

intArray

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL

114

(also program
variables)

Memory Basics – Memory Errors

• NOTE: if you try to free a NULL pointer, no
action occurs (and it doesn’t segfault!)

• much safer than accidentally
double free()ing memory

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

115

(also program
variables)

Memory Basics – Running Out

• the process is capable of giving memory to
you and the program as many times as
necessary (including having
that memory returned), as
long as it doesn’t run out of
memory to hand out

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

116

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

117

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

118

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

119

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

120

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

intArray = (int*)

 malloc (sizeof(int)

 * HUGE_NUM);

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

intArray = (int*) malloc
(sizeof(int) * HUGE_NUM)

121

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

• malloc will return NULL

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

122

(also program
variables)

Memory Basics – Running Out

• if you try to allocate memory, but there’s not
enough contiguous space to handle your
request

• malloc will return NULL

• that’s why you must check
that intArray != NULL
before you use it

Stack

Heap

program variables

userStr

train

userStr = (char*) malloc(…)

train = (CAR*) malloc(…)

NULL
intArray

123

Quick Note on Segfaults

• segfaults are not consistent (unfortunately)

• even if something should result in a segfault,
it might not (and then occasionally it will)
– this doesn’t mean there isn’t an error!

– C is trying to be “nice” to you when it can

• you have to be extra-super-duper-careful
with your memory management!!!

124

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

125

Memory and Functions

• how do different types of variables get passed
to and returned from functions?

• passing by value

• passing by reference

– implicit: arrays, strings

– explicit: pointers

126

Memory and Functions

• some simple examples:
int Add(int x, int y);

 int answer = Add(1, 2);

void PrintMenu(void);

 PrintMenu();

int GetAsciiValue(char c);

 int ascii = GetAsciiValue (‘m’);

• all passed by value

127

Memory and Functions

• passing arrays to functions
void TimesTwo(int array[], int size);

int arr [ARR_SIZE];

/* set values of arr */

TimesTwo(arr, ARR_SIZE);

• arrays of any type are passed by reference
– changes made in-function persist

128

Memory and Functions

• passing arrays to functions

void TimesTwo(int array[], int size);

void TimesTwo(int * array, int size);

• both of these behave the same way

– they take a pointer to:

• the beginning of an array

• an int – that we (can) treat like an array

129

Memory and Functions

• passing strings to functions
void PrintName(char name[]);

void PrintName(char *name);

char myName [NAME_SIZE] = “Alice”;

PrintName(myName);

• strings are arrays (of characters)

– implicitly passed by reference

130

Memory and Functions

• passing pointers to int to functions

void Square(int *n);

int x = 9;

Square(&x);

• pass address of an integer (in this case, x)

131

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(???);

• pass ???

 132

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(xPtr);

• pass xPtr, which is an address to an integer (x)

 133

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so what happens?

134

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so it will be returned to
the process when MakeCar() returns!

 135

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so what happens?

136

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so it belongs to you and
will remain on the heap until you free() it

 137

Outline

• Makefiles

• File I/O

• Command Line Arguments

• Random Numbers

• Re-Covering Pointers

• Memory and Functions

• Homework

138

Homework 4A

• Karaoke

• File I/O

• command line arguments

• allocating memory

• no grade for Homework 4A

• turn in working code or -10 points for HW 4B

 139

Quick Notes

• answered questions from HW2 on Piazza

• magic numbers

– should use #defines as you code

– not replace with #define after you’re done

• elegant solution to printing the full train

140

