
CIS 190: C/C++ Programming

Lecture 5

Linked Lists

1

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

2

Memory and Functions

• how do different types of variables get passed
to and returned from functions?

• passing by value

• passing by reference

– implicit: arrays, strings

– explicit: pointers

3

Memory and Functions

• some simple examples:
int Add(int x, int y);

 int answer = Add(1, 2);

void PrintMenu(void);

 PrintMenu();

int GetAsciiValue(char c);

 int ascii = GetAsciiValue (‘m’);

• all passed by value

4

Memory and Functions

• passing arrays to functions
void TimesTwo(int array[], int size);

int arr [ARR_SIZE];

/* set values of arr */

TimesTwo(arr, ARR_SIZE);

• arrays of any type are passed by reference
– changes made in-function persist

5

Memory and Functions

• passing arrays to functions

void TimesTwo(int array[], int size);

void TimesTwo(int * array, int size);

• both of these behave the same way

– they take a pointer to:

• the beginning of an array

• an int – that we (can) treat like an array

6

Memory and Functions

• passing strings to functions
void PrintName(char name[]);

void PrintName(char *name);

char myName [NAME_SIZE] = “Alice”;

PrintName(myName);

• strings are arrays (of characters)

– implicitly passed by reference

7

Memory and Functions

• passing pointers to int to functions

void Square(int *n);

int x = 9;

Square(&x);

• pass address of an integer (in this case, x)

8

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(???);

• pass ???

 9

Memory and Functions

• passing int pointers to function

void Square(int *n);

int x = 9;

int *xPtr = &x;

Square(xPtr);

• pass xPtr, which is an address to an integer (x)

 10

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so what happens?

11

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR temp;

 return &temp; }

• temp is on the stack – so it will be returned to
the process when MakeCar() returns!

 12

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so what happens?

13

Memory and Functions

• returning pointers from functions

CAR* MakeCar(void) {

 CAR* temp;

 temp = (CAR*) malloc (sizeof(CAR));

 return temp; }

• temp is on the heap – so it belongs to you and
will remain on the heap until you free() it

 14

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

15

What is a Linked List?

16

What is a Linked List?

• data structure

• dynamic

– allow easy insertion and deletion

• uses nodes that contain

– data

– pointer to next node in the list

• this is called singly linked, and is what we’ll be using

17

Question

• What are some disadvantages of arrays?

• not dynamic

– size is fixed once created

– you can resize it, but you have to do it by hand

– same for insertion & deletion; it’s possible, but it’s
difficult and there’s no built-in function for it

• require contiguous block of memory

18

Question

• Can we fix these with linked lists? How?

• not dynamic

– linked lists can change size constantly

– can add nodes anywhere in a linked lists

– elements can be removed with no empty spaces

• require contiguous block of memory

– only one node needs to be held contiguously

19

Question

• Are there any disadvantages to linked lists?

• harder to search/access than arrayz

• need to manage size/counter for size

• harder to manage memory

– in-list cycles, segfaults, etc.

• pointer to next node takes up more memory

 20

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

21

Linked List Anatomy

data

next

headPtr

data

next

data

next

data

next

NULL

22

Nodes

• a “node” is one element of a linked list

• nodes consist of two parts:

• typically represented as structs

data

next

23

Nodes

• a “node” is one element of a linked list

• nodes consist of two parts:

– data stored in node

• typically represented as structs

data

next

24

Nodes

• a “node” is one element of a linked list

• nodes consist of two parts:

– data stored in node

– pointer to next node in list

• typically represented as structs

data

next

25

Node Definition

• nodes are typically represented as structs

typedef struct node {

 int data;

 NODEPTR next;

} NODE;

26

Node Definition

• nodes are typically represented as structs

typedef struct node * NODEPTR;

typedef struct node {

 int data;

 NODEPTR next;

} NODE;

• typedef NODEPTR beforehand so that it can be
used in the definition of the NODE structure

27

Linked List Anatomy

data

next

headPtr

data

next

data

next

data

next

NULL

28

List Head

• points to the first NODE in the list

– if there is no list, points to NULL

• headPtr does not contain
any data of its own

– only a pointer to a NODE

29

headPtr

Linked Lists

data

next

NODE

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

30

Linked Lists

data

next

NODE
@ 0xFFC4

headPtr

NODEPTR
@ 0xFFC0

data

next

NODE
@ 0xFFEE

data

next

NODE
@ 0xFFDC

data

next

NODE
@ 0xFFC8

NULL

31

Linked Lists

data

0xFFC8

NODE
@ 0xFFC4

0xFFC4

NODEPTR
@ 0xFFC0

data

NULL

NODE
@ 0xFFEE

data

0xFFEE

NODE
@ 0xFFDC

data

0xFFDC

NODE
@ 0xFFC8

NULL

32

Linked Lists

data
 = 5;

0xFFC8

NODE
@ 0xFFC4

0xFFC4

NODEPTR
@ 0xFFC0

data
= 2;

NULL

NODE
@ 0xFFEE

data
= 8;

0xFFEE

NODE
@ 0xFFDC

data
= 3;

0xFFDC

NODE
@ 0xFFC8

NULL

33

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

34

More About headPtr

• headPtr is a pointer to a NODE

– it has a place where it’s stored in memory

– and it has where it points to in memory

35

More About headPtr

• headPtr is a pointer to a NODE

– it has a place where it’s stored in memory

– and it has where it points to in memory

36

0xFFC4 0xDC44

value
where it

points to in
memory

address
where it’s
stored in
memory

Passing Pointers

• when we pass a pointer by value, we pass
where it points to in memory

• so we can change the value(s) stored in the
memory location to which it points

– but we can’t alter the pointer itself

37

Passing Pointers by Value Example

void SquareNum (int *intPtr) {

 (*intPtr) = (*intPtr) *

 (*intPtr);

}

38

Passing Pointers by Value Example

void SquareNum (int *intPtr) {

 (*intPtr) = (*intPtr) *

 (*intPtr);

}

int x = 4;

int *xPtr = &x;

39

Passing Pointers by Value Example

void SquareNum (int *intPtr) {

 (*intPtr) = (*intPtr) *

 (*intPtr);

}

int x = 4;

int *xPtr = &x;

SquareNum (xPtr);

/* value of x is now 16 */

40

Passing Pointers

• when we pass a pointer by reference, we are
passing where it is stored in memory

• so we can change both

– where it points to in memory

and

– the values that are stored there

41

Passing Pointers by Reference Example

void Reassign (int **ptr,

 int *newAddress) {

 *ptr = newAddress;

}

42

Passing Pointers by Reference Example

void Reassign (int **ptr,

 int *newAddress) {

 *ptr = newAddress;

}

int x = 3, y = 5;

int *intPtr = &x;

43

Passing Pointers by Reference Example

void Reassign (int **ptr,

 int *newAddress) {

 *ptr = newAddress;

}

int x = 3, y = 5;

int *intPtr = &x;

ReassignPointer (&intPtr, &y);

/* intPtr now points to y */

 44

headPtr Naming Conventions

• two variable names for headPtr inside functions

• when we pass headPtr by value

– we pass where it points to in memory

– NODEPTR head = address of first node

• when we pass headPtr by reference

– we pass where it’s stored in memory

– NODEPTR *headPtr = where headPtr is stored

 45

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

46

Building a Linked List from Scratch

47

Building a Linked List from Scratch

headPtr

NODEPTR

NULL

48

1. declare a headPtr,
and set equal to NULL

Building a Linked List from Scratch

headPtr

NODEPTR

NULL

49

1. declare a headPtr,
and set equal to NULL

2. allocate space for a
node and set to a
temporary variable

data

next

NODE

tempNode NULL

Building a Linked List from Scratch

headPtr

NODEPTR

NULL

50

1. declare a headPtr,
and set equal to NULL

2. allocate space for a
node and set to a
temporary variable

3. initialize node’s data data
= 17;

next

NODE

tempNode NULL

Building a Linked List from Scratch

headPtr

NODEPTR

51

1. declare a headPtr,
and set equal to NULL

2. allocate space for a
node and set to a
temporary variable

3. initialize node’s data

4. insert node in list tempNode

NULL

data
= 17;

next

NODE

Building a Linked List from Scratch

headPtr

NODEPTR

52

• insert another node

tempNode

NULL

data
= 17;

next

NODE

data
= 2;

next

NODE

Building a Linked List from Scratch

headPtr

NODEPTR

53

• insert another node

• and another, etc.

tempNode

NULL

data
= 17;

next

NODE

data
= 2;

next

NODE

data
= 9;

next

NODE

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

54

Creating a Node

NODEPTR CreateNode (void)

1. create and allocate memory for a node
newNode = (NODEPTR) malloc (sizeof(NODE));

55

Creating a Node

NODEPTR CreateNode (void)

1. create and allocate memory for a node
newNode = (NODEPTR) malloc (sizeof(NODE));

– cast as NODEPTR, but space for NODE – why?

56

Creating a Node

NODEPTR CreateNode (void)

1. create and allocate memory for a node
newNode = (NODEPTR) malloc (sizeof(NODE));

– cast as NODEPTR, but space for NODE – why?

2. ensure that memory was allocated

3. initialize data

 57

Setting a Node’s Data

void SetData (NODEPTR temp,

 int data)

• temp is a pointer, but it points to a struct

– use arrow notation to access elements

• or dot star notation

 temp->data = data;

(*temp).data = data;

58

When “data” Itself is a Struct

typedef struct node {

 CIS_CLASS class;

 NODEPTR next;

} NODE;

int classNum;
char room[ROOM_STR];
char title [TITLE_STR];

next

NODE
STRUCT

CIS_CLASS
STRUCT
(“data”)

59

Setting Data when “data” is a Struct

void SetData (NODEPTR temp, int classNum,

 char room [ROOM_STR],

 char title [TITLE_STR])

temp->class.classNum = classNum;

strcpy(temp->class.room, room);

strcpy(temp->class.title, title);

• the class struct is not a pointer,
so we can use just dot notation

60

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

61

Traversing a Linked List

• used for many linked list operations

• check to see if list is empty

• use two temporary pointers to keep track of
current and previous nodes (prev and curr)

• move through list, setting prev to curr and
curr to the next element of the list
– continue until you hit the end (or conditions met)

62

Special Cases with Linked Lists

• always a separate rule when dealing with the
first element in the list (where headPtr points)

– and a separate rule for when the list is empty

• laid out in the code available online, but keep
it in mind whenever working with linked lists

– make sure you understand the code before you
start using it in your programs

63

• set curr to
*headPtr, the first
NODE in the list

Traversing a Linked List – Step 1
curr

NULL prev

NULL

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

64

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• check if curr == NULL
(end of list)

– if it doesn’t, continue

Traversing a Linked List – Step 2
curr

prev

NULL
65

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• check if curr == NULL
(end of list)

– if it doesn’t, continue

Traversing a Linked List – Step 2
curr

prev

NULL
or if your conditions have been met! but you

must always check that curr != NULL first
66

• set prev = curr

Traversing a Linked List – Step 3
prev curr

NULL

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

67

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• set curr = curr->next

Traversing a Linked List – Step 4
prev curr

68

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• set curr = curr->next

Traversing a Linked List – Step 4
prev curr

69

NULL

• continue to repeat
steps 2-4 until you
reach the end

Traversing a Linked List – Step 5
prev curr

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

70

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• check if curr == NULL
(end of list)

– if it doesn’t, continue

Traversing a Linked List – Step 5…
curr prev

71

• set prev = curr

Traversing a Linked List – Step 5…
prev

NULL

curr

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

72

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…
prev curr

73

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…
prev

curr

74

headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

NULL

• check if curr == NULL
(end of list)

Traversing a Linked List – Step 5…

curr

prev

– if it doesn’t,
continue

75

• set prev = curr

Traversing a Linked List – Step 5…

NULL

curr prev headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

76

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…

curr prev headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

77

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…

curr prev headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

78

NULL

• check if curr == NULL
(end of list)

Traversing a Linked List – Step 5…

curr prev headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

79

NULL

• check if curr == NULL
(end of list)

Traversing a Linked List – Step 5…

– it does!

– we’ve
reached the
end of the
list

curr prev headPtr

NODEPTR

data

next

NODE

data

next

NODE

data

next

NODE

80

Printing the Entire Linked List

void PrintList (NODEPTR head)

• check to see if list is empty

– if so, print out a message

• if not, traverse the linked list

– print out the data of each node

81

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

82

Inserting a Node

void Insert (NODEPTR *headPtr,

 NODEPTR temp)

• check if list is empty

– if so, temp becomes the first node

• if list is not empty

– traverse the list and insert temp at the end

83

NULL

• check if curr == NULL
(end of list)

Inserting a Node

curr prev headPtr

NODEPTR

data

next

NODE

84

NULL

Inserting a Node

curr prev headPtr

NODEPTR

data

next

NODE

85

• check if curr == NULL
(end of list)

• insert the new node by
changing where
prev->next points to

NULL

• check if curr == NULL
(end of list)

• insert the new node by
changing where
prev->next points to

– address of new node

Inserting a Node

prev headPtr

NODEPTR

data

next

NODE

86

data

next

NODE

curr

NULL

• check if curr == NULL
(end of list)

• insert the new node by
changing where
prev->next points to

– address of new node

• new node is
successfully inserted
at end of the list!

Inserting a Node

prev headPtr

NODEPTR

data

next

NODE

87

data

next

NODE

curr

Inserting a Node in the Middle

int Insert (NODEPTR *headPtr,

 NODEPTR temp,

 int where)

• traverse list until you come to place to insert

– CAUTION: don’t go past the end of the list!

• insert temp at appropriate spot

– CAUTION: don’t “lose” any pointers!

• return an integer to convey success/failure

88

Inserting a Node – Step 1

• traverse the list until
you find where you
want to insert temp

data

 next

NODE

data

 next

NODE

data

 next

NODE

NULL

prev

temp

curr

89

data

 next

NODE

data

 next

NODE

data

 next

NODE

Inserting a Node – Step 2

• first have temp->next
point to what will be
the node following it
in the list (curr)

temp->next = curr;

prev

temp

curr

90

data

 next

NODE

data

 next

NODE

data

 next

NODE

Inserting a Node – Step 3

• then you can have
prev->next point
to temp as the new
next node in the list

prev->next = temp;

prev

temp

curr

91

Inserting a Node – Done

data

 next

NODE

prev

data

 next

NODE

curr

• temp is now
stored in the list
between prev
and curr

data

 next

NODE

temp

92

Inserting a Node – Done

data

 next

NODE

data

 next

NODE

prev temp

data

 next

NODE

curr

• temp is now
stored in the list
between prev
and curr

– return a
successful code
(insert worked)

93

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

94

Deleting a Node

int Delete (NODEPTR *headPtr,

 int target)

• code is similar to insert

• pass in a way to find the node you want to delete

– traverse list until you find the correct node:

 curr->data == target

• return an integer to convey success/failure

95

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 1

prev

• traverse the list,
searching until
curr->data

 matches
 target

96

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 1

prev

• traverse the list,
searching until
curr->data

 matches
 target

97

but don’t forget, you must always
check that curr != NULL first

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 2

prev

• “remove” curr
from the list by
setting
prev->next to
curr->next

98

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

99

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

curr->next = NULL;

NULL

100

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

curr->next = NULL;

free(curr);

NULL

101

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

curr->next = NULL;

free(curr);

 102

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

curr->next = NULL;

free(curr);

curr = NULL;

NULL

103

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

curr->next = NULL;

free(curr);

curr = NULL;

NULL

104

Outline
• (from last class) Memory and Functions

• Linked Lists & Arrays

• Anatomy of a Linked List

– Details On Handling headPtr

• Using Linked Lists

– Creation

– Traversal

– Inserting a Node

– Deleting a Node

• Homework 4B

105

Homework 4B

• Karaoke

• heavy on pointers and memory management

• think before you attack

• start early

• test often (don’t forget edge cases)

• use a debugger when needed
106

Linked List Code for HW4B

• code for all of these functions is
available on the Lectures page

• comments explain each step

• you can use this code in your Homework 4B,
or as the basis for similar functions

107

