
CIS 190: C/C++ Programming 

Lecture 5 

Linked Lists 
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Memory and Functions 

• how do different types of variables get passed 
to and returned from functions? 

 

• passing by value 

• passing by reference 

– implicit: arrays, strings 

– explicit: pointers 
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Memory and Functions 

• some simple examples: 
int Add(int x, int y); 

 int answer = Add(1, 2); 

void PrintMenu(void); 

 PrintMenu(); 

int GetAsciiValue(char c); 

 int ascii = GetAsciiValue (‘m’); 

 

• all passed by value 
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Memory and Functions 

• passing arrays to functions 
void TimesTwo(int array[], int size); 

 

int arr [ARR_SIZE]; 

/* set values of arr */ 

 

TimesTwo(arr, ARR_SIZE); 

 

• arrays of any type are passed by reference 
– changes made in-function persist 
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Memory and Functions 

• passing arrays to functions 

 

void TimesTwo(int array[], int size); 

void TimesTwo(int * array, int size); 

 

• both of these behave the same way 

– they take a pointer to: 

• the beginning of an array 

• an int – that we (can) treat like an array 
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Memory and Functions 

• passing strings to functions 
void PrintName(char  name[]); 

void PrintName(char *name  ); 

 

char myName [NAME_SIZE] = “Alice”; 

PrintName(myName); 

 

• strings are arrays (of characters) 

– implicitly passed by reference 
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Memory and Functions 

• passing pointers to int to functions 

 
void Square(int *n); 

 

int x = 9; 

Square(&x); 

 

• pass address of an integer (in this case, x) 
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Memory and Functions 

• passing int pointers to function 

 
void Square(int *n); 

 

int x = 9; 

int *xPtr = &x; 

Square(???); 

 

• pass ??? 
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Memory and Functions 

• passing int pointers to function 

 
void Square(int *n); 

 

int x = 9; 

int *xPtr = &x; 

Square(xPtr); 

 

• pass xPtr, which is an address to an integer (x) 
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Memory and Functions 

• returning pointers from functions 

 
CAR* MakeCar(void) { 

  CAR temp; 

   

  return &temp;  } 

 

• temp is on the stack – so what happens? 
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Memory and Functions 

• returning pointers from functions 

 
CAR* MakeCar(void) { 

  CAR temp; 

   

  return &temp;  } 

 

• temp is on the stack – so it will be returned to 
the process when MakeCar() returns! 
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Memory and Functions 

• returning pointers from functions 

 
CAR* MakeCar(void) { 

  CAR* temp; 

  temp = (CAR*) malloc (sizeof(CAR)); 

  return  temp;  } 

 

• temp is on the heap – so what happens? 
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Memory and Functions 

• returning pointers from functions 

 
CAR* MakeCar(void) { 

  CAR* temp; 

  temp = (CAR*) malloc (sizeof(CAR)); 

  return  temp;  } 

 

• temp is on the heap – so it belongs to you and 
will remain on the heap until you free() it 
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What is a Linked List? 
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What is a Linked List? 

• data structure 

• dynamic 

– allow easy insertion and deletion 

 

• uses nodes that contain 

– data 

– pointer to next node in the list 

• this is called singly linked, and is what we’ll be using 
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Question 

• What are some disadvantages of arrays? 

 

• not dynamic 

– size is fixed once created 

– you can resize it, but you have to do it by hand 

– same for insertion & deletion; it’s possible, but it’s 
difficult and there’s no built-in function for it 

• require contiguous block of memory 
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Question 

• Can we fix these with linked lists? How? 

 

• not dynamic 

– linked lists can change size constantly 

– can add nodes anywhere in a linked lists 

– elements can be removed with no empty spaces 

• require contiguous block of memory 

– only one node needs to be held contiguously 
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Question 

• Are there any disadvantages to linked lists? 

 

• harder to search/access than arrayz 

• need to manage size/counter for size 

• harder to manage memory 

– in-list cycles, segfaults, etc. 

• pointer to next node takes up more memory 
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Linked List Anatomy 

data 
 
 

next 

headPtr 

data 
 
 

next 

data 
 
 

next 

data 
 
 

next 

NULL 

22 



Nodes 

• a “node” is one element of a linked list 

 

• nodes consist of two parts: 

 

 

 

• typically represented as structs 

 

data 
 
 

next 

23 



Nodes 

• a “node” is one element of a linked list 

 

• nodes consist of two parts: 

– data stored in node 

 

 

• typically represented as structs 

 

data 
 
 

next 
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Nodes 

• a “node” is one element of a linked list 

 

• nodes consist of two parts: 

– data stored in node 

– pointer to next node in list 

 

• typically represented as structs 

 

data 
 
 

next 
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Node Definition 

• nodes are typically represented as structs 

 

typedef struct node { 

    int     data;  

    NODEPTR next; 

} NODE; 
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Node Definition 

• nodes are typically represented as structs 

typedef struct node * NODEPTR; 

typedef struct node { 

    int     data;  

    NODEPTR next; 

} NODE; 

• typedef NODEPTR beforehand so that it can be 
used in the definition of the NODE structure 
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Linked List Anatomy 

data 
 
 

next 

headPtr 

data 
 
 

next 

data 
 
 

next 

data 
 
 

next 

NULL 
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List Head 

• points to the first NODE in the list 

– if there is no list, points to NULL 

 

• headPtr does not contain  
any data of its own 

– only a pointer to a NODE 
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headPtr 



Linked Lists 

data 
 
 

next 
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headPtr 

NODEPTR 
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next 
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NODE 
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next 

NODE 

NULL 
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Linked Lists 

data 
 
 

next 

NODE  
@ 0xFFC4 

 

headPtr 

NODEPTR  
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data 
 
 

next 

NODE  
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data 
 
 

next 

NODE  
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data 
 
 

next 
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NULL 
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Linked Lists 

data 
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NODE  
@ 0xFFC4 

 

0xFFC4 

NODEPTR  
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data 
 
 

NULL 

NODE  
@ 0xFFEE 

data 
 
 

0xFFEE 
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NULL 
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Linked Lists 

data 
 = 5; 

 
0xFFC8 

NODE  
@ 0xFFC4 

 

0xFFC4 

NODEPTR  
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data  
= 2; 

 
NULL 

NODE  
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More About headPtr 

• headPtr is a pointer to a NODE 

– it has a place where it’s stored in memory 

– and it has where it points to in memory 
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More About headPtr 

• headPtr is a pointer to a NODE 

– it has a place where it’s stored in memory 

– and it has where it points to in memory 
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0xFFC4 0xDC44 

value 
where it 

points to in 
memory 

address 
where it’s 
stored in 
memory 



Passing Pointers 

• when we pass a pointer by value, we pass 
where it points to in memory 

 

• so we can change the value(s) stored in the 
memory location to which it points 

– but we can’t alter the pointer itself 
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Passing Pointers by Value Example 

void SquareNum (int *intPtr) { 

  (*intPtr) = (*intPtr) *  

              (*intPtr); 

} 
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Passing Pointers by Value Example 

void SquareNum (int *intPtr) { 

  (*intPtr) = (*intPtr) *  

              (*intPtr); 

} 

int x = 4; 

int *xPtr = &x; 
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Passing Pointers by Value Example 

void SquareNum (int *intPtr) { 

  (*intPtr) = (*intPtr) *  

              (*intPtr); 

} 

int x = 4; 

int *xPtr = &x; 

SquareNum (xPtr); 

/* value of x is now 16 */ 
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Passing Pointers 

• when we pass a pointer by reference, we are 
passing where it is stored in memory 

 

• so we can change both 

– where it points to in memory 

and 

– the values that are stored there 
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Passing Pointers by Reference Example 

void Reassign (int **ptr,  

               int *newAddress) { 

  *ptr = newAddress; 

} 
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Passing Pointers by Reference Example 

void Reassign (int **ptr,  

               int *newAddress) { 

  *ptr = newAddress; 

} 

int x = 3, y = 5; 

int *intPtr = &x; 
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Passing Pointers by Reference Example 

void Reassign (int **ptr,  

               int *newAddress) { 

  *ptr = newAddress; 

} 

int x = 3, y = 5; 

int *intPtr = &x; 

ReassignPointer (&intPtr, &y); 

/* intPtr now points to y */ 
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headPtr Naming Conventions 

• two variable names for headPtr inside functions 
 

• when we pass headPtr by value 

–  we pass where it points to in memory 

–  NODEPTR  head    = address of first node 
 

• when we pass headPtr by reference 

–  we pass where it’s stored in memory 

–  NODEPTR *headPtr = where headPtr is stored 

 45 



Outline 
• (from last class) Memory and Functions 

• Linked Lists & Arrays 

• Anatomy of a Linked List 

– Details On Handling headPtr 

• Using Linked Lists 

– Creation 

– Traversal 

– Inserting a Node 

– Deleting a Node 

• Homework 4B 

 

46 



Building a Linked List from Scratch 
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Building a Linked List from Scratch 

headPtr 

NODEPTR 

NULL 
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1. declare a headPtr, 
and set equal to NULL 

 



Building a Linked List from Scratch 

headPtr 

NODEPTR 

NULL 
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1. declare a headPtr, 
and set equal to NULL 

2. allocate space for a 
node and set to a 
temporary variable 

data 
 
 
 

next 

NODE 

tempNode NULL 



Building a Linked List from Scratch 

headPtr 

NODEPTR 

NULL 
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1. declare a headPtr, 
and set equal to NULL 

2. allocate space for a 
node and set to a 
temporary variable 

3. initialize node’s data data 
= 17; 

 
 

next 

NODE 

tempNode NULL 



Building a Linked List from Scratch 

headPtr 

NODEPTR 

51 

1. declare a headPtr, 
and set equal to NULL 

2. allocate space for a 
node and set to a 
temporary variable 

3. initialize node’s data 

4. insert node in list tempNode 

NULL 

data 
= 17; 

 
 

next 

NODE 



Building a Linked List from Scratch 

headPtr 

NODEPTR 

52 

• insert another node 

tempNode 

NULL 

data 
= 17; 

 
 

next 

NODE 

data  
= 2; 

 
 

next 

NODE 



Building a Linked List from Scratch 

headPtr 

NODEPTR 
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• insert another node 

• and another, etc. 

tempNode 

NULL 

data 
= 17; 

 
 

next 

NODE 

data  
= 2; 

 
 

next 

NODE 

data  
= 9; 

 
 

next 

NODE 
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Creating a Node 

NODEPTR CreateNode (void) 

 

1. create and allocate memory for a node 
newNode = (NODEPTR) malloc (sizeof(NODE)); 
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Creating a Node 

NODEPTR CreateNode (void) 

 

1. create and allocate memory for a node 
newNode = (NODEPTR) malloc (sizeof(NODE)); 

 

– cast as NODEPTR, but space for NODE – why? 
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Creating a Node 

NODEPTR CreateNode (void) 

 

1. create and allocate memory for a node 
newNode = (NODEPTR) malloc (sizeof(NODE)); 

 

– cast as NODEPTR, but space for NODE – why? 

 

2. ensure that memory was allocated 

3. initialize data 
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Setting a Node’s Data 

void SetData (NODEPTR temp,  

              int data) 

 

• temp is a pointer, but it points to a struct 

– use arrow notation to access elements 

• or dot star notation 
 

  temp->data = data; 

(*temp).data = data; 
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When “data” Itself is a Struct 

typedef struct node { 

    CIS_CLASS class; 

    NODEPTR   next; 

} NODE; 

 

 
int     classNum; 
char  room[ROOM_STR]; 
char  title [TITLE_STR]; 
 
 

next 

NODE  
STRUCT 

CIS_CLASS 
STRUCT 
(“data”) 
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Setting Data when “data” is a Struct 

void SetData (NODEPTR temp, int classNum,  

              char room  [ROOM_STR],  

              char title [TITLE_STR]) 

 

temp->class.classNum = classNum; 

strcpy(temp->class.room,  room); 

strcpy(temp->class.title, title); 

 

• the class struct is not a pointer,  
so we can use just dot notation 
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Traversing a Linked List 

• used for many linked list operations 

 

• check to see if list is empty 

 

• use two temporary pointers to keep track of 
current and previous nodes (prev and curr) 

• move through list, setting prev to curr and 
curr to the next element of the list 
– continue until you hit the end (or conditions met) 
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Special Cases with Linked Lists 

• always a separate rule when dealing with the 
first element in the list (where headPtr points) 

– and a separate rule for when the list is empty 

 

• laid out in the code available online, but keep 
it in mind whenever working with linked lists 

– make sure you understand the code before you 
start using it in your programs 
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• set curr to 
*headPtr, the first 
NODE in the list 

Traversing a Linked List – Step 1 
curr 

NULL prev 

NULL 

headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• check if curr == NULL 
(end of list) 

– if it doesn’t, continue 

Traversing a Linked List – Step 2 
curr 

prev 

NULL 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• check if curr == NULL 
(end of list) 

– if it doesn’t, continue 

Traversing a Linked List – Step 2 
curr 

prev 

NULL 
or if your conditions have been met!  but you  

must always check that curr != NULL first 
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• set prev = curr 

Traversing a Linked List – Step 3 
prev curr 

NULL 

headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• set curr = curr->next 

Traversing a Linked List – Step 4 
prev curr 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• set curr = curr->next 

Traversing a Linked List – Step 4 
prev curr 
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NULL 

• continue to repeat 
steps 2-4 until you 
reach the end 

Traversing a Linked List – Step 5 
prev curr 

headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• check if curr == NULL 
(end of list) 

– if it doesn’t, continue 

Traversing a Linked List – Step 5… 
curr prev 
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• set prev = curr 

Traversing a Linked List – Step 5… 
prev 

NULL 

curr 

headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• set curr = curr->next 

Traversing a Linked List – Step 5… 
prev curr 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• set curr = curr->next 

Traversing a Linked List – Step 5… 
prev 

curr 
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headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

NULL 

• check if curr == NULL 
(end of list) 

Traversing a Linked List – Step 5… 

curr 

prev 

– if it doesn’t, 
continue 
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• set prev = curr 

Traversing a Linked List – Step 5… 

NULL 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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NULL 

• set curr = curr->next 

Traversing a Linked List – Step 5… 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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NULL 

• set curr = curr->next 

Traversing a Linked List – Step 5… 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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NULL 

• check if curr == NULL 
(end of list) 

Traversing a Linked List – Step 5… 

 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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NULL 

• check if curr == NULL 
(end of list) 

Traversing a Linked List – Step 5… 

– it does! 

–  we’ve 
reached the 
end of the 
list 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 

data 
 
 

next 

NODE 
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Printing the Entire Linked List 

void PrintList (NODEPTR head) 

 

• check to see if list is empty 

– if so, print out a message 

• if not, traverse the linked list 

– print out the data of each node 
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Inserting a Node 

void Insert (NODEPTR *headPtr,  

             NODEPTR  temp) 

 

• check if list is empty 

– if so, temp becomes the first node 

• if list is not empty 

– traverse the list and insert temp at the end 
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NULL 

• check if curr == NULL 
(end of list) 

Inserting a Node 

 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 
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NULL 

Inserting a Node 

curr prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 

85 

• check if curr == NULL 
(end of list) 

• insert the new node by 
changing where  
prev->next points to 

 

 



NULL 

• check if curr == NULL 
(end of list) 

• insert the new node by 
changing where  
prev->next points to 

– address of new node 

 

 

Inserting a Node 

prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 
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data 
 
 

next 

NODE 

curr 



NULL 

• check if curr == NULL 
(end of list) 

• insert the new node by 
changing where  
prev->next points to 

– address of new node 

 

• new node is 
successfully inserted 
at end of the list! 

 

 

Inserting a Node 

prev headPtr 

NODEPTR 

data 
 
 

next 

NODE 
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data 
 
 

next 

NODE 

curr 



Inserting a Node in the Middle 

int  Insert (NODEPTR *headPtr,  

             NODEPTR  temp,  

             int where) 

• traverse list until you come to place to insert 

– CAUTION: don’t go past the end of the list! 

• insert temp at appropriate spot 

– CAUTION: don’t “lose” any pointers! 

• return an integer to convey success/failure 
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Inserting a Node – Step 1 

• traverse the list until 
you find where you 
want to insert temp 

data 
 
 next 

NODE 

data 
 
 next 

NODE 
 

data 
 
 next 

NODE 

NULL 

prev 

temp 

curr 
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data 
 
 next 

NODE 

data 
 
 next 

NODE 
 

data 
 
 next 

NODE 

Inserting a Node – Step 2 

• first have temp->next 
point to what will be 
the node following it 
in the list (curr) 
 

 
temp->next = curr; 

 

 

prev 

temp 

curr 
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data 
 
 next 

NODE 

data 
 
 next 

NODE 
 

data 
 
 next 

NODE 

Inserting a Node – Step 3 

• then you can have 
prev->next point 
to temp as the new 
next node in the list 
 

 
prev->next = temp; 

 

 

prev 

temp 

curr 
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Inserting a Node – Done 

data 
 
 next 

NODE 

prev 

data 
 
 next 

NODE 

curr 

• temp is now 
stored in the list 
between prev 
and curr 

 

 

 
data 

 
 next 

NODE 

temp 
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Inserting a Node – Done 

data 
 
 next 

NODE 

data 
 
 next 

NODE 

prev temp 

data 
 
 next 

NODE 

curr 

• temp is now 
stored in the list 
between prev 
and curr 

– return a 
successful code 
(insert worked) 
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Deleting a Node 

int Delete (NODEPTR *headPtr,  

            int target) 

 

• code is similar to insert 

• pass in a way to find the node you want to delete 

– traverse list until you find the correct node: 

  curr->data == target 

• return an integer to convey success/failure 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 1 

prev 

• traverse the list, 
searching until 
curr->data    

  matches  
     target 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 1 

prev 

• traverse the list, 
searching until 
curr->data  

  matches  
     target 

 

 

 

97 

but don’t forget, you must always  
check that curr != NULL first 



data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 2 

prev 

• “remove” curr 
from the list by 
setting 
prev->next to 
curr->next 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 

 

 
curr->next = NULL; 

 

 
NULL 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 

 

 
curr->next = NULL; 

free(curr); 

 

 

NULL 

101 



data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 

 

 
curr->next = NULL; 

free(curr); 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 

 

 
curr->next = NULL; 

free(curr); 

curr = NULL; 

 

NULL 
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data 
 
 next 

NODEPTR 

data 
 
 next 

NODEPTR 

curr 

Deleting a Node – Step 3 

prev 

• free the  
memory used  
by curr and set 
pointers to NULL 

 

 
curr->next = NULL; 

free(curr); 

curr = NULL; 

 

 

NULL 
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Homework 4B 

• Karaoke 

 

• heavy on pointers and memory management 

• think before you attack 

 

• start early 

• test often (don’t forget edge cases) 

• use a debugger when needed 
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Linked List Code for HW4B 

• code for all of these functions is  
available on the Lectures page 

 

• comments explain each step 

 

• you can use this code in your Homework 4B, 
or as the basis for similar functions 
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