
CIS 190: C/C++ Programming

Lecture 11

Polymorphism

1

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas
2

Review of Inheritance

• specialization through sub classes

• child class has direct access to

– parent member functions and variables that are

• ???

3

Review of Inheritance

• specialization through sub classes

• child class has direct access to

– parent member functions and variables that are

• public

• protected

4

Review of Inheritance

• specialization through sub classes

• child class has direct access to

– parent member functions and variables that are:

• public

• protected

• parent class has direct access to:

– ??? in the child class

5

Review of Inheritance

• specialization through sub classes

• child class has direct access to

– parent member functions and variables that are:

• public

• protected

• parent class has direct access to:

– nothing in the child class

6

What is Inherited

• public
members

• protected
members

• private

variables

Parent Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

7

What is Inherited

Child Class

• child class
members

(functions &
variables)

• public
members

• protected
members

• private

variables

Parent Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

8

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

9

Car Example

class SUV: public Car {/*etc*/};

class Sedan: public Car {/*etc*/};

class Van: public Car {/*etc*/};

class Jeep: public Car {/*etc*/};

SUV Sedan

Car

Jeep Van

10

Car Rental Example

• we want to implement a catalog of different
types of cars available for rental

• how could we do this?

11

Car Rental Example

• we want to implement a catalog of different
types of cars available for rental

• how could we do this?

• can accomplish this with a single vector

– using polymorphism

12

What is Polymorphism?

• ability to manipulate objects in a
type-independent way

13

What is Polymorphism?

• ability to manipulate objects in a
type-independent way

• already done to an extent via overriding

– child class overrides a parent class function

14

What is Polymorphism?

• ability to manipulate objects in a
type-independent way

• already done to an extent via overriding

– child class overrides a parent class function

• can take it further using subtyping,
AKA inclusion polymorphism

15

Using Polymorphism

• a pointer of a parent class type can point to an
object of a child class type

Vehicle *vehiclePtr = &myCar;

• why is this valid?

16

Using Polymorphism

• a pointer of a parent class type can point to an
object of a child class type

Vehicle *vehiclePtr = &myCar;

• why is this valid?

–because myCar is-a Vehicle

17

Polymorphism: Car Rental

18

vector <Car*> rentalList;

vector of Car* objects

Polymorphism: Car Rental

19

vector <Car*> rentalList;

• can populate the vector with
any of Car’s child classes

SUV SUV Jeep Van Jeep Sedan Sedan SUV

vector of Car* objects

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

20

Limitations of Polymorphism

• parent classes do not inherit from child classes

– what about public member variables and functions?

21

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

22

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

23

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• which version of PrintSpecs() does this call?

vehiclePtr->PrintSpecs();

24

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• which version of PrintSpecs() does this call?

vehiclePtr->PrintSpecs();

Vehicle::PrintSpecs()

25

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• will this work?
vehiclePtr->RepaintCar();

26

Limitations of Polymorphism

• parent classes do not inherit from child classes

– not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• will this work?
vehiclePtr->RepaintCar();

– NO! RepaintCar() is a function of the
Car child class, not the Vehicle class

27

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

28

Virtual Functions

• can grant access to child methods by
using virtual functions

• virtual functions are how C++ implements
late binding

– used when the child class implementation is
unknown or variable at parent class creation time

29

Late Binding

• simply put, binding is determined at run time

– as opposed to at compile time

• in the context of polymorphism, you’re saying

I don’t know for sure how this function is going to
be implemented, so wait until it’s used and then get
the implementation from the object instance.

30

Using Virtual Functions

• declare the function in the parent class with
the keyword virtual in front

virtual void Drive();

31

Using Virtual Functions

• declare the function in the parent class with
the keyword virtual in front

virtual void Drive();

• only use virtual with the prototype

// don’t do this

virtual void Vehicle::Drive();

32

Using Virtual Functions

• the corresponding child class function does
not require the virtual keyword

• but…

33

Using Virtual Functions

• the corresponding child class function does
not require the virtual keyword

• should still include it, for clarity’s sake

– makes it obvious the function is virtual,
even without looking at the parent class

// inside the Car class

virtual void Drive();

 34

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

35

Function Types – Virtual

virtual void Drive();

• parent class must have an implementation

– even if it’s trivial or empty

• child classes may override if they choose to

– if not overridden, parent class definition used

36

Function Types – Pure Virtual

virtual void Drive() = 0;

• denote pure virtual by the “ = 0” at the end

37

Function Types – Pure Virtual

virtual void Drive() = 0;

• denote pure virtual by the “ = 0” at the end

• the parent class has no implementation
of this function

– child classes must have an implementation

38

Function Types – Pure Virtual

virtual void Drive() = 0;

• denote pure virtual by the “ = 0” at the end

• the parent class has no implementation
of this function

– child classes must have an implementation

– parent class is now an abstract class

39

Abstract Classes

• an abstract class is one that contains a
function that is pure virtual

40

Abstract Classes

• an abstract class is one that contains a
function that is pure virtual

• cannot declare abstract class objects

– why?

41

Abstract Classes

• an abstract class is one that contains a
function that is pure virtual

• cannot declare abstract class objects

– why?

• this means abstract classes can only
be used as base classes

42

Applying Virtual to Shape, etc.

• how should we label the following functions?
(virtual, pure virtual, or leave alone)

CalculateArea();

CalculatePerimeter();

Print();

SetColor();

43

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

44

Behind the Scenes

• if our Drive() function is virtual,
how does the compiler know which child
class’s version of the function to call?

SUV SUV Jeep Van Jeep Sedan Sedan SUV

vector of Car* objects

45

Virtual Function Tables

• the compiler uses virtual function tables
whenever we use polymorphism

• virtual function tables are created for:

– what types of classes?

46

Virtual Function Tables

• the compiler uses virtual function tables
whenever we use polymorphism

• virtual function tables are created for:

– classes with virtual functions

– child classes of those classes

47

Virtual Table Pointer

SUV SUV Jeep Van Jeep Sedan Sedan Van

48

Virtual Table Pointer

• the compiler adds a hidden variable

SUV SUV Jeep Van Jeep Sedan Sedan Van

*__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr

49

Virtual Table Pointer

• the compiler also adds a virtual table of
functions for each class

 SUV SUV Jeep Van Jeep Sedan Sedan Van

*__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr

SUV virtual table Jeep virtual table Van virtual table Sedan virtual table

50

Virtual Table Pointer

• each virtual table has pointers to each
of the virtual functions of that class

 SUV SUV Jeep Van Jeep Sedan Sedan Van

*__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr

SUV virtual table

* to SUV::Drive();

Jeep virtual table

* to Jeep::Drive();

Van virtual table

* to Van::Drive();

Sedan virtual table

* to Sedan::Drive();

51

Virtual Table Pointer

• the hidden variable points to the
appropriate virtual table of functions

 SUV SUV Jeep Van Jeep Sedan Sedan Van

*__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr *__vptr

SUV virtual table

* to SUV::Drive();

Jeep virtual table

* to Jeep::Drive();

Van virtual table

* to Van::Drive();

Sedan virtual table

* to Sedan::Drive();

52

Virtual Everything!

• in Java, all functions are virtual by default

– everything seems to work fine for Java

• why don’t we make all our functions
virtual in C++ classes?

– ???

53

Virtual Everything!

• in Java, all functions are virtual by default

– everything seems to work fine for Java

• why don’t we make all our functions
virtual in C++ classes?

– non-virtual functions can’t be overridden
(in the context of parent class pointers)

– creates unnecessary overhead

54

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

55

Virtual Destructors

Vehicle *vehicPtr = new Car;

delete vehicPtr;

• for any class with virtual functions, you
must declare a virtual destructor as well

• why?

56

Virtual Destructors

Vehicle *vehicPtr = new Car;

delete vehicPtr;

• for any class with virtual functions, you
must declare a virtual destructor as well

• non-virtual destructors will only
invoke the base class’s destructor

57

Virtual Constructors

• not a thing... why?

58

Virtual Constructors

• not a thing... why?

• we use polymorphism and virtual functions to
manipulate objects without knowing type or
having complete information about the object

• when we construct an object,
we have complete information
– there’s no reason to have a virtual constructor

59

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

60

Application of Polymorphism

• examine polymorphism and virtual functions

• using these classes:

–Animal

• Bird

• Cat

• Dog

61
LIVECODING LIVECODING

Outline

• Review of Inheritance

• Polymorphism

– Limitations

– Virtual Functions

– Abstract Classes & Function Types

– Virtual Function Tables

– Virtual Destructors/Constructors

• Application of Polymorphism

• Project Alphas

62

Project Alphas

• due next Sunday (November 23rd)

• doesn’t:

–have to be working

– a complete project

• in a folder named <your_team_name>

63

Next Time

• take an (anonymous) in-class survey
for 1% overall extra credit

• receive feedback on your project proposal

• have some say in what we cover during
our last (gasp! sob!) class together

64

