
CIS 190: C/C++ Programming

Lecture 2

Pointers and More

Separate Compilation

• to prevent the file containing main() from
getting too crowded and long
– function prototypes in their own file (functions.h)

– function definitions in their own file (functions.c)

• put #include “functions.h” at top of
any .c file using those functions
– note that we use quotes (“) instead of carats (<>)

• need to compile files separately

Compiling with multiple .c files

• for three files: main.c, functions.c, functions.h

– main.c and functions.c both have
 #include “functions.h”

> gcc –c –Wall main.c

> gcc –c –Wall functions.c

> gcc –Wall main.o functions.o

 -o main

Separate Compilation Mistakes

• Don’t #include .c files

• Don’t put #include in a .h file

• Only #include those files whose function
prototypes are needed

• getting the error: “undefined reference
to ‘functionName’”
– linker couldn’t find the function ‘functionName’

– 99% of the time, this is because ‘functionName’ was
spelled wrong somewhere

Structures

• collection of variables under one name
– variables can be of different types

struct cisClass

{

 int classNum;

 char room [20];

 char title [30];

} ;

Using Structures

• to declare a structure of type cisClass:
struct cisClass cis190;

• to access a variable inside, use dot notation:

cis190.classNum = 190;

strcpy(cis190.room, “Towne 309”);

printf(“class #: %d\n”,
cis190.classNum);

• when using scanf:

scanf(“%d”, &(cis190.classNum));

typedefs

• typedef declares an alias for a type
typedef unsigned char uchar;

• can use it to simplify struct types:
typedef struct cisClass {

 int classNum;

 char room [20];

 char title [30];

} CIS_CLASS;

Arrays of Structures

• structures are variables, which means we can
make arrays of them:
CIS_CLASS classes [4];

• access like an array:
classes[0].classNum = 190;

classNum classNum classNum classNum

room room room room

title title title title

0 1 2 3

#define

• symbolic constants – replaced at compile time

#define NUM_CLASSES 4

• use #define to avoid “magic numbers”

– numbers used directly in code

• used the same way you would a variable

CIS_CLASS classes [NUM_CLASSES];

Pointers

• “point” to locations in memory
int x = 5;

int *xPtr = &x;

• pointer must match the type of the variable
whose location in memory it points to

• scanf uses pointers for ints, etc. because it needs
to know where to store the values it reads in
scanf(“%d”, &x);

Accessing data in pointers

• & - ampersand; returns the address of a value
int x = 5; /* x = 5 */

int *xPtr = &x; /* xPtr points to x */

• * - asterisk; dereferences a pointer to get to
 its value
int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

y = 2; /* x = 3 and y = 2 */

Visualization of pointers

variable

memory address

value

Visualization of pointers

int x = 5; /* x = 5 */

variable x

memory address 0x7f96c

value 5

Visualization of pointers

int x = 5; /* x = 5 */

int *xPtr = &x; /* xPtr points to x */

variable x xPtr

memory address 0x7f96c 0x7f960

value 5 0x7f96c

Visualization of pointers

int x = 5; /* x = 5 */

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

variable x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c 5

Visualization of pointers

int x = 5; /* x = 5 */

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

variable x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 3 0x7f96c 5

Visualization of pointers

int x = 5; /* x = 5 */

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is 5 */

x = 3; /* y is still 5 */

y = 2; /* x = 3 and y = 2 */

variable x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 3 0x7f96c 2

Pointer Assignments

• pointers can be assigned to one another:
int x = 5; /* x = 5 */

int *xPtr1 = &x; /* xPtr1 points

 to x */

int *xPtr2; /* uninitialized */

xPtr2 = xPtr1; /* xPtr2 also points

 to x */

(*xPtr2)++; /* x is now 6 */

(*xPtr1)--; /* x is 5 again */

Pointers and functions

• pointers allow us to call-by-reference
– previously we could only call-by-value

• passing by reference allows the variable to be changed
inside the function:
void AddOneByVal (int var) { var++; }
void AddOneByRef (int *var) { (*var)++; }

• calling functions with pointers
int x = 5;

AddOneByVal(x); /* x = 5 still */

AddOneByRef(&x); /* x = 6 now */

Pointers and functions

int x = 5;

printf(“x at start: %d\n”, x);

AddOneByVal(x);

printf(“x after AddOneByVal: %d\n”, x);

AddOneByRef(&x);

printf(“x after AddOneByRef: %d\n”, x);

 > x at start: 5

 > x after AddOneByVal: 5

 > x after AddOneByRef: 6

Pointers and arrays

• arrays are pointers!

– they’re pointers to the first element in the array

• arrays are not exactly pointers!

– cannot assign one array to another

• this results in a syntax error:

array1 = array2;

Pointers and arrays and functions

since arrays are pointers, that means:

• arrays passed to a function always
result in call-by-reference

– does not make a copy of the array

– any changes made to an array
in a function will remain

• passing ONE ELEMENT is still call-by-value

– classes[0] is a value, not a pointer

Pointers and structs

• remember, to access a structure member:
 cisClass.classNum = 190;

• when we are using a pointer to that struct:
(*cisClassPtr).classNum = 191;

 cisClassPtr->classNum = 192;

• the -> operator is simply shorthand
for using * and . together

– to access the value of a member of a structure

C-style strings are arrays too

• reminder: C strings are arrays of characters

– so use in functions is always call-by-reference

• remember scanf?

scanf(“%d”, &x); /* for int */

scanf(“%s”, str); /* for string */

• no “&” because C-strings are arrays

C-style strings in functions

• using in functions:
/* function takes char pointer */

void ToUpper (char *word);

char* str = “hello”; /* c string*/

/* str is a ptr to an array of chars*/

ToUpper (str);

Makefiles

• contain a list of rules called by typing

make ruleName

 in the command line

• example Makefile on the page for HW2

– more info in the comments inside the Makefile

– can create your own rules

– makes compiling, etc. a lot quicker and easier

Homework 2

• Trains

– structs, arrays of structs, C strings, separate
compilation, printf formatting, pointers

– hardest part is printing the train!

– readability of output (see sample output)

• hw2.c, trains.c, trains.h

– don’t submit Makefile or any other files!

– take credit for your code!

