
CIS 190: C/C++ Programming

Linked Lists

Why Use Linked Lists?

• solve many of the problems arrays have

• like…

Problems with Arrays

• arrays have a fixed size

– may be too large, or too small

• arrays must be held in contiguous space

– may have the room, but not contiguously

– can cause “dead” space in memory

• arrays are difficult to “break” or edit

– add one element in the middle

– remove one element from the middle w/o a gap

– break into multiple arrays

Solutions through Linked Lists

• arrays have a fixed size

– linked lists can change size constantly

• arrays must be held in contiguous space

– may have the room, but not contiguously

– can cause “dead” space in memory

• arrays are difficult to “break” or edit

– add one element in the middle

– remove one element from the middle w/o a gap

– break into multiple arrays

Solutions through Linked Lists

• arrays have a fixed size

– linked lists can change size constantly

• arrays must be held in contiguous space

– only one node must be held in contiguous space

– linked list may be stored in many disparate places

• arrays are difficult to “break” or edit

– add one element in the middle

– remove one element from the middle w/o a gap

– break into multiple arrays

Solutions through Linked Lists

• arrays have a fixed size

– linked lists can change size constantly

• arrays must be held in contiguous space

– only one node must be held in contiguous space

– linked list may be stored in many disparate places

• arrays are difficult to “break” or edit

– can add nodes anywhere in a linked list

– remove elements with no gaps at all

– concatenation and separation are feasible

Linked Lists

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

Nodes

• a “node” is one element of a linked list

• nodes consist of two parts:

– data stored in node

– pointer to next node in list

• typically represented as structs

data

next

headPtr

• headPtr is not the first node in the list

• headPtr is of type NODEPTR*
– it is a pointer to a variable of type NODEPTR

• headPtr being NULL means the list is empty

• convention inside functions:
– NODEPTR* headPtr = pointer to a NODEPTR

– NODEPTR head = address of first node

headPtr

NODEPTR*

Node Definition

typedef struct node * NODEPTR;

typedef struct node {

 int data;

 NODEPTR next;

} NODE;

• typedef NODEPTR beforehand so that it can be
used in the definition of the NODE structure

Linked Lists

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

Linked Lists

data

next

NODEPTR
@ 0xFFC4

headPtr

NODEPTR*
@ 0xFFC0

data

next

NODEPTR
@ 0xFFEE

data

next

NODEPTR
@ 0xFFDC

data

next

NODEPTR
@ 0xFFC8

NULL

Linked Lists

data

0xFFC8

NODEPTR
@ 0xFFC4

0xFFC4

NODEPTR*
@ 0xFFC0

data

NULL

NODEPTR
@ 0xFFEE

data

0xFFEE

NODEPTR
@ 0xFFDC

data

0xFFDC

NODEPTR
@ 0xFFC8

NULL

Linked Lists

data
 = 5;

0xFFC8

NODEPTR
@ 0xFFC4

0xFFC4

NODEPTR*
@ 0xFFC0

data
= 2;

NULL

NODEPTR
@ 0xFFEE

data
= 8;

0xFFEE

NODEPTR
@ 0xFFDC

data
= 3;

0xFFDC

NODEPTR
@ 0xFFC8

NULL

Linked List Operations

• create a new node

• assign values to the data in a node

• print the entire linked list

– in a readable format

• insert a node

– at the end of the list

– somewhere else: middle of list, beginning, etc.

• delete a node

Creating a Node

NODEPTR CreateNode (void)

1. create and allocate memory for a node
newNode = (NODEPTR) malloc (sizeof(NODE));

2. ensure that memory was allocated

3. initialize data

Creating a Node

NODEPTR CreateNode (void)

1. create and allocate memory for a node
newNode = (NODEPTR) malloc (sizeof(NODE));

– cast as NODEPTR, but space for NODE – why?

2. ensure that memory was allocated

3. initialize data

Setting a Node’s Data

void SetData (NODEPTR temp,

 int data)

• NODEPTR is a pointer, but it points to a struct

– use arrow notation to access elements

• or dot star notation

 temp->data = data;

(*temp).data = data;

When “data” is a Struct

typedef struct node {

 CIS_CLASS class;

 NODEPTR next;

} NODE;

data

next

NODE

int classNum;
char room[ROOM_STR];
char title [TITLE_STR];

NODE
STRUCT

CIS_CLASS
STRUCT

Setting Data when “data” is a Struct

void SetData (NODEPTR temp, int classNum,

 char room [ROOM_STR],

 char title [TITLE_STR])

temp->class.classNum = classNum;

strcpy(temp->class.room, room);

strcpy(temp->class.title, title);

• class struct is not a pointer, so we simply
use dot notation

Traversing a Linked List

• used for many linked list operations

• check to see if list is empty

• use two temporary pointers to keep track of
current and previous nodes (prev and curr)

• move through list, setting prev to curr and
curr to the next element of the list
– continue until you hit the end (or conditions met)

Special Cases with Linked Lists

• always a separate rule when dealing with the
first element in the list (where headPtr points)

– and a separate rule for when the list is empty

• laid out in the code available online, but keep
it in mind whenever working with linked lists

– make sure you understand the code before you
start using it in your programs

Traversing a Linked List – Step by Step

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL prev curr

NULL NULL

• set curr to
*headPtr,
the first element

Traversing a Linked List – Step 1
curr

NULL prev

NULL

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• check if curr == NULL
(end of list)

– if it doesn’t, continue

Traversing a Linked List – Step 2
curr

prev

NULL
or if your conditions have been met! but you

must always check that curr != NULL first

• set prev = curr

Traversing a Linked List – Step 3
prev curr

NULL

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 4
prev curr

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 4
prev curr

NULL

• repeat steps 2-4 until
you reach the end (or
the node that
 matches the
 conditions
 you are
 looking for)

Traversing a Linked List – Step 5
prev curr

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• check if curr == NULL
(end of list)

– if it doesn’t, continue

Traversing a Linked List – Step 5…
curr prev

• set prev = curr

Traversing a Linked List – Step 5…
prev

NULL

curr

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…
prev curr

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…
prev

curr

headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• check if curr == NULL
(end of list)

Traversing a Linked List – Step 5…

curr

prev

– if it doesn’t,
continue

• set prev = curr

Traversing a Linked List – Step 5…

NULL

curr prev headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…

curr prev headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• set curr = curr->next

Traversing a Linked List – Step 5…

curr prev headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

NULL

• check if curr == NULL
(end of list)

Traversing a Linked List – Step 5…

– it does!

– we’ve
reached the
end of the
list

curr prev headPtr

NODEPTR*

data

next

NODEPTR

data

next

NODEPTR

data

next

NODEPTR

Printing the Entire Linked List

void PrintList (NODEPTR head)

• check to see if list is empty

– if so, print out a message

• if not, traverse the linked list

– print out the data of each node

– NODEPTR head is pointer to first node

Inserting a Node

void Insert (NODEPTR *headPtr,

 NODEPTR temp)

• check if list is empty

– if so, temp becomes the first node

• if list is not empty

– traverse the list and insert temp at the end

Inserting a Node in Middle

int Insert (NODEPTR *headPtr,

 NODEPTR temp, int where)

• traverse list until you come to point to insert

– CAUTION: don’t go past the end

• insert temp at appropriate spot

– CAUTION: don’t “lose” any pointers

• return an integer to convey success/failure

Inserting a Node – Step 1

• traverse the list until
you find where you
want to insert temp

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

NULL

prev

temp

curr

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

Inserting a Node – Step 2

• first have temp point
to the next node in
the list (curr)

temp->next = curr;

prev

temp

curr

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

Inserting a Node – Step 3

• then you can have
prev point to temp
as the new next node
in the list

temp->next = curr;

prev

temp

curr

Inserting a Node – Done

data

 next

NODEPTR

prev

data

 next

NODEPTR

curr

• temp is now
stored in the list
between prev
and curr

data

 next

NODEPTR

temp

Inserting a Node – Done

data

 next

NODEPTR

data

 next

NODEPTR

prev temp

data

 next

NODEPTR

curr

• temp is now
stored in the list
between prev
and curr

– return a
successful code
(insert worked)

Deleting a Node

int Delete (NODEPTR *headPtr,

 int target)

• similar to insert

• pass in a way to find node to delete

– traverse list until you find the correct node:

 curr->data == target

• return an integer to convey success/failure

curr

Deleting a Node – Step 1

prev

• traverse the list,
searching until
curr->data

 matches
 target

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 1

prev

• traverse the list,
searching until
curr->data

 matches
 target

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 2

prev

• “remove” curr
from the list by
changing
prev->next to
curr->next

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and set
pointers to NULL

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and
set pointers to
NULL

curr->next = NULL;

NULL

data

 next

NODEPTR

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and
set pointers to
NULL

curr->next = NULL;

free(curr);

NULL

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and
set pointers to
NULL

curr->next = NULL;

free(curr);

NULL

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and
set pointers to
NULL

curr->next = NULL;

free(curr);

curr = NULL;

NULL

NULL

data

 next

NODEPTR

data

 next

NODEPTR

curr

Deleting a Node – Step 3

prev

• free the
memory used
by curr and
set pointers to
NULL

curr->next = NULL;

free(curr);

curr = NULL;

NULL

Linked List Code

• code for all of these functions
available on the syllabus page

• comments explain each step

• you can use this code in your Homework 4B,
or as the basis for similar functions

Homework 4B

• Karaoke

• heavy on pointers and memory management

• think before you attack

• start early

• test often

• use a debugger when needed

Moving a Node Between Lists

• will need to write a Move() function to
perform this task for Homework 4B

Moving a Node Between Lists

• will need to write a Move() function to
perform this task for Homework 4B

• traverse list until you come to node to move

– CAUTION: don’t go past the end

• remove node from one list, add to other

– CAUTION: don’t “lose” any pointers

• return an integer to convey success/failure

