
CIS 190: C/C++ Programming

Classes in C++

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Headers in C++

• done same way as in C

• including user “.h” files:
#include “userFile.h”

• including C++ libraries
#include <iostream>

An example

typedef struct bar{

 int a;

} BAR;

bar.h

#include “bar.h”

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

#include “bar.h”

#include “foo.h”

int main()

{

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

An example

typedef struct bar{

 int a;

} BAR;

bar.h

#include “bar.h”

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

#include “bar.h”

#include “foo.h”

int main()

{

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

when we try
to compile
this…

An example

typedef struct bar{

 int a;

} BAR;

bar.h

#include “bar.h”

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

#include “bar.h”

#include “foo.h”

int main()

{

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

In file included from foo.h:1:0,

 from main.c:2:

bar.h:1:16: error: redefinition of 'struct bar'

In file included from main.c:1:0:

bar.h:1:16: note: originally defined here

In file included from foo.h:1:0,

 from main.c:2:

bar.h:3:3: error: conflicting types for 'BAR'

In file included from main.c:1:0:

bar.h:3:3: note: previous declaration of 'BAR' was here

when we try
to compile
this…

What the compiler is “seeing”
typedef struct bar{

 int a;

} BAR;

bar.h

typedef struct bar{

 int a;

} BAR;

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

typedef struct bar{

 int a;

} BAR;

typedef struct bar{

 int a;

} BAR;

typedef struct foo{

 BAR x;

 char y;

} FOO;

int main() {

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

#include

“bar.h”

#include

“bar.h”
#include

“foo.h”

What the compiler is “seeing”
typedef struct bar{

 int a;

} BAR;

bar.h

typedef struct bar{

 int a;

} BAR;

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

typedef struct bar{

 int a;

} BAR;

typedef struct bar{

 int a;

} BAR;

typedef struct foo{

 BAR x;

 char y;

} FOO;

int main() {

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

#include

“bar.h”

#include

“bar.h”
#include

“foo.h”

Header Protection

• we want to have the definition of
the BAR struct in both:

– foo.h

– main.c

• easiest way to solve this problem is through
the use of header guards

Header Guards

• in each “.h” file, use the following:

#ifndef BAR_H if not (previously) defined

#define BAR_H then define

[CONTENTS OF .H FILE GO HERE]

#endif /* BAR_H */ stop the “if” at this
 point (end of the file)

A fixed example

typedef struct bar{

 int a;

} BAR;

bar.h

#include “bar.h”

typedef struct foo{

 BAR x;

 char y;

} FOO;

foo.h

#include “bar.h”

#include “foo.h”

int main()

{

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

A fixed example

#ifndef BAR_H

#define BAR_H

typedef struct bar{

 int a;

} BAR;

#endif /*BAR_H*/

bar.h

#ifndef FOO_H

#define FOO_H

#include “bar.h”

typedef struct foo{

 BAR x;

 char y;

} FOO;

#endif /*FOO_H*/

foo.h

#include “bar.h”

#include “foo.h”

int main()

{

 BAR i;

 FOO j;

 /* ... */

 return 0;

}

main.c

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Functions in C++

• very similar to functions in C
– variable scope remains the same

– can still pass things by value, or by reference
• implicit (arrays) or explicit (pointers)

• a few differences from functions in C
– no need to pass array length (just use empty

brackets)

 void PrintArray (int arr []);

Using const in C++ functions

• when used on pass-by-value

int SquareNum (int x) {

 return (x * x);

}

int SquareNum (const int x) {

 return (x * x);

}

Using const in C++ functions

• when used on pass-by-value

• no real difference; kind of pointless

– changes to pass-by-value variables don’t last
beyond the scope of the function

• conventionally: not “wrong,” but not done

Using const in C++ functions

• when used on pass-by-reference

void SquareNum (int *x) {

 (*x) = (*x) * (*x); /* fine */

}

void SquareNum (const int *x) {

 (*x) = (*x) * (*x); /* error */

}

Using const in C++ functions

• when you compile the “const” version:

void SquareNum (const int *x) {

 (*x) = (*x) * (*x); /* error */

}

error: assignment of read-only

 location '*x'

Using const in C++ functions

• when used on pass-by-reference

• huge difference

– prevents changes to variables, even when they are
passed in by reference

• conventionally: use for user-defined types
(structs, etc.) but don’t use for simple built-in
types (int, double, char) except maybe arrays

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Procedural Programming

• up until now, everything we’ve been doing has
been procedural programming

• code is divided into multiple procedures
– procedures operate on data (structures), when

given correct number and type of arguments

• examples: PrintTrain(), ReadSingerFile(),
DestroyList(), ProcessEvents(), etc.

Object-Oriented Programming

• now that we’re using C++, we can start taking
advantage of object-oriented programming

• code and data are combined into a single
entity called a class

– each instance of a given class is an object of that
class type

• OOP is more modular, and more transparent

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Example: Date Struct

• implementing a date structure in C:

typedef struct date {

 int month;

 int day;

 int year;

} DATE;

Example: Date Class

• implementing a date class in C++:

class Date {

public:

 int m_month;

 int m_day;

 int m_year;

};

Functions in Classes

• let’s add a function to the class that will print
out the name of the month, given the number
class Date {

public:

 void OutputMonth();

 int m_month;

 int m_day;

 int m_year;

};

OutputMonth

void OutputMonth();

• nothing is passed in to the function because it
only needs to look at the m_month variable

– which is a member variable of the Date class

– just like OutputMonth()

OutputMonth

void Date::OutputMonth() {

 switch (m_month) {

 case 1: cout << “January”; break;

 case 2: cout << “February”; break;

 case 3: cout << “March”; break;

 case 4: cout << “April”; break;

 /* etc */

 case 11: cout << “November”; break;

 case 12: cout << “December”; break;

 default:

 cout << “Error in Date::OutputMonth()”;

 }

}

OutputMonth

void Date::OutputMonth() {

 switch (m_month) {

 case 1: cout << “January”; break;

 case 2: cout << “February”; break;

 case 3: cout << “March”; break;

 case 4: cout << “April”; break;

 /* etc */

 case 11: cout << “November”; break;

 case 12: cout << “December”; break;

 default:

 cout << “Error in Date::OutputMonth()”;

 }

}

include class name;
more than one class
can have a function
with the same name

OutputMonth

void Date::OutputMonth() {

 switch (m_month) {

 case 1: cout << “January”; break;

 case 2: cout << “February”; break;

 case 3: cout << “March”; break;

 case 4: cout << “April”; break;

 /* etc */

 case 11: cout << “November”; break;

 case 12: cout << “December”; break;

 default:

 cout << “Error in Date::OutputMonth()”;

 }

}

this double colon is called
the scope resolution
operator, and associates
the member function
OutputMonth() with the
class Date

OutputMonth

void Date::OutputMonth() {

 switch (m_month) {

 case 1: cout << “January”; break;

 case 2: cout << “February”; break;

 case 3: cout << “March”; break;

 case 4: cout << “April”; break;

 /* etc */

 case 11: cout << “November”; break;

 case 12: cout << “December”; break;

 default:

 cout << “Error in Date::OutputMonth()”;

 }

}

we can directly access m_month
because it is a member variable of
the Date class, to which the
OutputMonth() function belongs

Using the Date class
Date today, birthday;

cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date

cout << “Please enter today’s date: ”;

cin >> today.m_day >> today.m_month >> today.m_year;

// get user’s birthday

cout << “Please enter your birthday: ”;

cin >> birthday.m_day >> birthday.m_month

 >> birthday.m_year;

//echo output

cout << “Today’s date is “ << today.OutputMonth()

 << today.m_day << “, “ << today.m_year << endl;

cout << “Your birthday is “ << birthday.OutputMonth()

 << birthday.m_day << “, “ << birthday.m_year << endl;

Using the Date class
Date today, birthday;

cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date

cout << “Please enter today’s date: ”;

cin >> today.m_day >> today.m_month >> today.m_year;

// get user’s birthday

cout << “Please enter your birthday: ”;

cin >> birthday.m_day >> birthday.m_month

 >> birthday.m_year;

//echo output

cout << “Today’s date is “ << today.OutputMonth()

 << today.m_day << “, “ << today.m_year << endl;

cout << “Your birthday is “ << birthday.OutputMonth()

 << birthday.m_day << “, “ << birthday.m_year << endl;

variables today and
birthday are instances of
the class Date

they are both objects of
type Date

Using the Date class
Date today, birthday;

cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date

cout << “Please enter today’s date: ”;

cin >> today.m_day >> today.m_month >> today.m_year;

// get user’s birthday

cout << “Please enter your birthday: ”;

cin >> birthday.m_day >> birthday.m_month

 >> birthday.m_year;

//echo output

cout << “Today’s date is “ << today.OutputMonth()

 << today.m_day << “, “ << today.m_year << endl;

cout << “Your birthday is “ << birthday.OutputMonth()

 << birthday.m_day << “, “ << birthday.m_year << endl;

when we are not inside the class (as we
were in the OutputMonth() function) we
must use the dot operator to access
today’s member variables

Using the Date class
Date today, birthday;

cout << “Please enter dates as DD MM YYYY” << endl;

// get today’s date

cout << “Please enter today’s date: ”;

cin >> today.m_day >> today.m_month >> today.m_year;

// get user’s birthday

cout << “Please enter your birthday: ”;

cin >> birthday.m_day >> birthday.m_month

 >> birthday.m_year;

//echo output

cout << “Today’s date is “ << today.OutputMonth()

 << today.m_day << “, “ << today.m_year << endl;

cout << “Your birthday is “ << birthday.OutputMonth()

 << birthday.m_day << “, “ << birthday.m_year << endl;

we also use the dot operator to
call the member function
OutputMonth() on the Date
object today; again, note that we
do not need to pass in the
member variable m_month

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Public, Private, Protected

• in our definition of the Date class, everything
was public – this is not good practice!

• we have three different options for
access specifiers, each with their own role:

– public

– private

– protected

Example: Public, Private, Protected

class Date {

public:

 int m_month;

private:

 int m_day;

protected:

 int m_year;

};

Using Public, Private, Protected

• public
– anything that has access to the birthday object

also has access to birthday.m_month, etc.

• private
– m_day can only be accessed by member functions

of the Date class; cannot be accessed in main(), etc.

• protected
– m_year can by accessed by member functions of

the Date class and by member functions of any
derived classes (we’ll cover this later)

Access specifiers for Date class

class Date {

public:

 void OutputMonth();

private:

 int m_month;

 int m_day;

 int m_year;

};

New member functions

• now that m_month, m_day, and m_year are
private, how do we give them values, or
retrieve those values?

• write public member functions to provide
indirect, controlled access for the user

New member functions

• accessor functions:

– allow retrieval of private data members

– GetMonth(), GetDay(), GetYear()

• mutator functions:

– allow changing the value of a private data member

– SetMonth(), SetDay(), SetYear()

• service functions:

– provide support for the operations

– OutputMonth()

Access specifiers for Date class

class Date {

public:

 void OutputMonth();

 int GetMonth();

 int GetDay();

 int GetYear();

 void SetMonth(int m);

 void SetDay (int d);

 void SetYear (int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

Outline

• Header Protection

• Functions in C++

• Procedural Programming vs OOP

• Classes

– Access

– Constructors

Constructors

• special member functions used to create
(or “construct”) new objects

• automatically called when an object is created

• initializes the values of all data members

Date class Constructors

class Date {

public:

 void OutputMonth();

 Date (int m, int d, int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

Date class Constructors

class Date {

public:

 void OutputMonth();

 Date (int m, int d, int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

exact same
name as the
class

Date class Constructors

class Date {

public:

 void OutputMonth();

 Date (int m, int d, int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

no return
type, not
even void

Constructor Definition

Date::Date (int m, int d, int y)

{

 m_month = m;

 m_day = d;

 m_year = y;

}

Constructor Definition

• by using classes with private members and
public functions, we can control almost
everything

• can prevent “incorrect” values from being
accepted by the constructor

Constructor Definition

Date::Date (int m, int d, int y)

{

 if (m > 0 && m <= 12) {
 m_month = m; }

 else { m_month = 1; }

 if (d > 0 && d <= 31) {

 m_day = d; }

 else { m_day = 1; }

 if (y > 0 && y <= 2100) {

 m_year = y; }

 else { m_year = 1; }

}

Overloading

• we can define multiple versions of the
constructor – we can overload the function

• different constructors for:

– when all values are known

– when no values are known

– when some subset of values are known

• have the constructor set user-supplied values

Date::Date (int m, int d, int y)

{

 m_month = m;

 m_day = d;

 m_year = y;

}

All Known Values

• have the constructor set user-supplied values

Date::Date (int m, int d, int y)

{

 m_month = m;

 m_day = d;

 m_year = y;

}

All Known Values

invoked when
constructor is called
with all arguments

No Known Values

• have the constructor set all default values

Date::Date ()

{

 m_month = 1;

 m_day = 1;

 m_year = 1

}

No Known Values

• have the constructor set all default values

Date::Date ()

{

 m_month = 1;

 m_day = 1;

 m_year = 1

}

invoked when
constructor is called
with no arguments

Some Known Values

• have the constructor set some default values

Date::Date (int m, int d)

{

 m_month = m;

 m_day = d;

 m_year = 1

}

Some Known Values

• have the constructor set some default values

Date::Date (int m, int d)

{

 m_month = m;

 m_day = d;

 m_year = 1

}

invoked when
constructor is called
with some arguments

Overloaded Date Constructor

• so far we have the following constructors:

Date::Date (int m, int d, int y);

Date::Date (int m, int d);

Date::Date ();

• would the following be a valid constructor?

Date::Date (int m, int y);

Avoiding Multiple Constructors

• defining multiple constructors for different
known values is a lot of code duplication

• we can avoid this by setting default
parameters in our constructors

Default Parameters

• in the function prototype only, provide default
values you want the constructor to use

Date (int m = 3, int d = 6,

 int y = 2014);

Default Parameters

• in the function definition literally
nothing changes

Date::Date (int m, int d, int y) {

 m_month = m;

 m_day = d;

 m_year = y;

}

Using Default Parameters

• the following are all valid declarations:

Date graduation(5,19,2014);

Date today;

Date halloween(10,25);

Date july(4);

// graduation: 5/19/2014

// today: 3/6/2014

// halloween: 10/25/2014

// july: 4/6/2014

Using Default Parameters

• the following are all valid declarations:

Date graduation(5,19,2014);

Date today;

Date halloween(10,25);

Date july(4);

// graduation: 5/19/2014

// today: 3/6/2014

// halloween: 10/25/2014

// july: 4/6/2014

Using Default Parameters

• the following are all valid declarations:

Date graduation(5,19,2014);

Date today;

Date halloween(10,25);

Date july(4);

// graduation: 5/19/2014

// today: 3/6/2014

// halloween: 10/25/2014

// july: 4/6/2014

NOTE: when you
call a constructor
with no arguments,
you do not give it
empty parentheses

Default Constructors

• default constructor is provided by compiler

– will handle declarations of Date instances

• but, if you create any other constructor, the
compiler doesn’t provide a default constructor

– so make sure you always create a default
constructor too, even if its body is just empty

