
CIS 190: C/C++ Programming

Vectors, Enumeration, and
Overloading

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

Vectors

• similar to arrays, but much more flexible

• provided by the C++ Standard Template
Library (STL)

– must #include <vector> to use

Declaring a Vector

vector <int> intA;

– empty integer vector, called intA

vector <int> intB (10);

– integer vector with 10 integers, initialized to zero

vector <int> intC (10, -1);

– integer vector with 10 integers, initialized to -1

Copying Vectors

• can assign one vector to another

– even if they’re different sizes

– as long as they’re the same type

intA = intB;

• can create a copy of an existing
vector when declaring a new vector
vector <int> intA (intB);

Accessing Vector Members

• two different methods

• square brackets
intB[2] = 7;

• at() operation
intB.at(2) = 7;

Accessing Vector Members with []

• square brackets function as they did with
arrays in C

• no bounds checking

– sometimes it works (C is being “nice)

– sometimes it doesn’t work

Accessing Vector Members with .at()

• .at() operator uses bounds checking

• will throw an exception when out of bounds

– causes program to terminate

– we can handle it (with try-catch blocks)

• slower than [], but safer

Passing by Reference

• by default, vectors are passed by value
– a copy is made, and that copy is passed to the

function; changes made do not show in main()

• can explicitly pass by reference if necessary

// function prototype

void ModifyV (vector <int> &ref);

// function call

ModifyV (refVector);

Multi-dimensional Vectors

• multi-dimensional vectors are basically
“a vector of vectors”

vector < vector <char> > charVec (10);

• size at end (here, 10), is optional

– without it, creates an empty vector

Multi-dimensional Vectors

• multi-dimensional vectors are basically
“a vector of vectors”

vector < vector <char> > charVec (10);

this space in between the two
closing ‘>’ characters is required
by many implementations of C++

resize()

void resize (n, val);

• resize function used to resize vectors

• n is new size of vector
– if larger than current, vector size is expanded

– if smaller than current, vector is reduced to first n
elements

• val is optional value to place in new elements
– if not specified, default constructor is used

using resize()

• if we declare an empty vec (emptyVec) we can
change it to the size NUM_ROWS by NUM_COLS

// resize rows first

emptyVec.resize(NUM_ROWS);

for (int i = 0; i < NUM_ROWS; i++)

{

 // resize each row to new column size

 emptyVec[i].resize(NUM_COLS);

}

push_back()

• add a new element at the end of a vector

void push_back (val);

• val is the value to be assigned to the new
element of the vector that is added

charVec.push_back(‘a’);

resize() vs push_back()

• resize() is best used when you know the
exact size a vector needs to be

– like when you know the total number of possible
destinations for HW6, for example

• push_back() is best used when elements
are added one by one

– like when you are reading in TrainCars from a file,
and need to put them in the appropriate city row

size()

• unlike arrays in C, vectors in C++ “know” their
size (due to C++ managing the memory of a
vector for you)

• size() returns the number of elements in the
vector it is called on
int cSize = charVec.size();

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

Enumeration

• type of variable used to set up collections of
named integer constants

• useful for “lists” of values that are tedious to
implement using #define or const

#define WINTER 0

#define SPRING 1

#define SUMMER 2

#define FALL 3

Enumeration Types

• two types of enum declarations

• named type
enum seasons {WINTER, SPRING,

 SUMMER, FALL};

• unnamed type
enum {WINTER, SPRING,

 SUMMER, FALL};

Enumeration Types

• named types allow you to create variables of
that type, and use it in function args, etc.
enum seasons CurrentSemester;

currentSemester = SPRING;

• unnamed types are useful for naming
constants, but when you don’t intend to
declare variables, etc.

Enumeration Benefits

• named enumeration types allow you to
restrict valid values

– a ‘seasons’ variable cannot have a value other
than the four seasons in the enum declaration

• unnamed types allow simpler management of
a large list of constants

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

“Print” functions

• function returns a string

– call function within a cout statement

string PrintName (int studentNum);

• function performs its own printing

– call function separately from a cout statement

void PrintName (int studentNum);

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

Function Overloading

• last class, covered overloading constructors

• functions in C++ are uniquely identified by
both their names and their parameters

– but NOT their return type!

– we can overload any kind of function

Overloading Example

void PrintMessage (void) {

 cout << “Hello World!” << endl;

}

void PrintMessage (string msg) {

 cout << msg << endl;

}

Overloading Details

• can use default values, like with constructors
void PrintMessage

 (string msg = “Hello World!”) {

 cout << msg << endl;

}

• need to be careful about accidentally
passing ambiguous arguments

Operator Overloading

• given variable types have predefined behavior
for operators like +, -, ==, etc.

• might be nice to have these operators work
for user-defined variables, like Classes

– often best to have them as member functions

– allows access to private member data and
functions

Overloading Restrictions

• cannot overload ::, ., *, or ? and :

• cannot create new operators

• overload-able operators include
=, >>, <<, ++, --, +=, +,

<, >, <=, >=, ==, !=, []

Operator Overloading Example

• any arguments passed in must be const,
and must be passed in by reference

Complex Complex::operator+

 (const Complex &num2)

{

 double r_real = real + num2.real;

 double r_imag = imag + num2.imag;

 return Complex(r_real, r_imag);

}

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

new and delete

• replace the malloc() and
 free() functions from C

Date *datePtr1, *datePtr2;

datePtr1 = new Date;

datePtr2 = new Date(7,4);

delete datePtr1;

delete datePtr2;

Managing Memory in C++

• just as important as managing memory in C

• keep track of what memory “you” have

• think carefully about

– “losing” pointers

– memory leaks

– when memory should be deleted (freed)

Outline

• Vectors

• Enumeration

• “Print” functions

• Function Overloading

• New/Delete

• Destructors

Destructors

• opposite of constructors

• used when memory of a user-created Class
type is deleted

• compiler automatically provides for you

– does not take into account dynamic memory

Destructor Example

• let’s say we have a new member variable of
our Date class called ‘m_calendar’ that is
a dynamically allocated array of characters
– dynamically allocated in our constructor

• we must create a destructor to handle this
Date::~Date() {

 delete m_calendar;

}

Homework 6

• Classy Trains

– last homework!!!

• practice with implementing a C++ class

• more emphasis on:

– error checking

– code style and choices

Project

• proposal due April 2nd; project due the day of
the presentation (April 24th at earliest)
– can’t use late days for project deadlines

• think about what you want to do

• think about who you want to work with
– work must be done in pairs

– post on Piazza to find teammates

• details will be up before next class

