
CIS 190: C/C++ Programming

Lecture 10

Inheritance

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

Code Reuse

• important to successful coding

• efficient

– no need to reinvent the wheel

• error free (more likely to be)

– code has been previously used/test

Code Reuse Methods

• functions

• classes

• inheritance

– what we’ll cover now

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

Object Relationships

• two types of object relationships

• is-a

– inheritance

• has-a

– composition

– aggregation

both are forms
of association

Inheritance Relationship

a Car is-a Vehicle

• the Car class inherits from the Vehicle class

• Vehicle is the general class, or the parent class

• Car is the specialized class, or child class, that
is a subclass of Vehicle

Inheritance Relationship Code

class Vehicle {

 public:

 // functions

 private:

 int m_numAxles;

 int m_numWheels;

 int m_maxSpeed;

 double m_weight;

 // etc

} ;

Inheritance Relationship Code

class Car: public Vehicle {

 public:

 //functions

 private:

 int m_numSeats;

 double m_MPG;

 string m_color;

 string m_fuelType;

 // etc

} ;

Inheritance Relationship Code

class Truck:
 public Vehicle { /*etc*/ };

class Plane:
 public Vehicle { /*etc*/ };

class UnmannedDrone:
 public Vehicle { /*etc*/ };

class SpaceShuttle:
 public Vehicle { /*etc*/ };

class Submarine:
 public Vehicle { /*etc*/ };

Composition Relationship

a Car has-a Chassis

• the Car class contains an object of type Chassis

• a Chassis object is part of the Car class

• a Chassis cannot “live” out of context of a Car

– if the Car is destroyed, the Chassis is also destroyed

Composition Relationship Code

class Chassis {

 public:

 //functions

 private:

 string m_material;

 double m_weight;

 double m_maxLoad;

 // etc

} ;

Composition Relationship Code

class Car: public Vehicle {

 public:

 //functions

 private:

 // member variables, etc.

 // has-a (composition)

 Chassis m_chassis;

} ;

Aggregation Relationship

a Car has-a Person (driver)

• the Car class is linked to an object of type Person

• the Person class is not related to the Car class

• a Person can live out of context of a Car

• a Person must be “contained” in the Car
object via a pointer to a Person object

Aggregation Relationship Code

class Person {

 public:

 // functions

 private:

 string m_firstName;

 string m_lastName;

 double m_height;

 double m_weight;

 // etc

} ;

Aggregation Relationship Code

class Car: public Vehicle {

 public:

 //functions

 private:

 // member variables, etc.

 // has-a (aggregation)

 Person *m_driver;

} ;

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

Inheritance Access

• inheritance can be done via
public, private, or protected
– like member functions and member variables

• we’re going to focus exclusively
on public inheritance

• you can also have multiple inheritance;
we won’t be covering it

Hierarchy Example

Vehicle

SUV

etc.

Sedan

Car Plane Truck

Jeep Van

Sp
ec

ia
liz

at
io

n

Hierarchy Vocabulary

• more general class (e.g., Vehicle) can be called:

– parent class

– base class

– superclass

• more specialized class (e.g., Car) can be called:

– child class

– derived class

– subclass

Hierarchy Details

• parent class contains all that is common among
its child classes
– Vehicle has a maximum speed, a weight, etc.

because all vehicles have these

• member variables and functions of the parent
class are inherited by all of its child classes

• child classes can use, extend, or
replace the parent class behaviors

Hierarchy Details

• use, extend, or replace base class behaviors

• use
– entirely unchanged (e.g., mutators, accessors, etc.)

• extend
– create entirely new behaviors (e.g., RepaintCar(),

new mutators/accessors, etc.)

• replace
– overriding functions (covered later)

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

What is Inherited

Vehicle Class

• public members
• protected members
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

What is Inherited
Car Class

• subclass
members

(functions &
variables)

• public fxns&vars
• protected fxns&vars
• private variables

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

Vehicle Class

What is Inherited
Car Class

• subclass
members

(functions &
variables)

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

What is Inherited
Car Class

• subclass
members

(functions &
variables)

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

not (directly) accessible
to Car objects

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

What is Inherited
Car Class

• subclass
members

(functions &
variables)

• public
fxns&vars

• protected
fxns&vars

• private

variables

Vehicle Class

not (directly) accessible
to Car objects

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

can access and invoke, but
are not directly inherited

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

Handling Access

• child class has access to parent class’s:

– public member variables

– public member functions

– protected member variables

– protected member functions

• how should we set the access modifier for
variables we want the child class to access?

Handling Access

• we should not make these variables protected!

• leave them private!

• instead, child class uses protected functions
when interacting with parent variables

– mutators

– accessors

Outline

• Code Reuse

• Object Relationships

• Inheritance

– What is Inherited

– Handling Access

• Overriding

Specialization

• child classes are meant to be
more specialized than parent classes

– adding new member functions

– adding new member variables

• child classes can also specialize by overriding
parent class member functions

– child class uses exact same function signature

Overriding vs Overloading

• overloading

– use the same function name, but with different
parameters for each overloaded implementation

• overriding

– use the same function name and parameters, but
with a different implementation

– child class method “hides” parent class method

– only possible by using inheritance

Overriding/Overloading Examples

• Vehicle class contains these public functions
void Upgrade();

void PrintSpecs();

void Move(double distance);

• Car class inherits all of these public functions

– can therefore override them

Overriding Example

• Car class overrides Upgrade()
void Car::Upgrade()

{

 // entirely new Car-only code

}

• when Upgrade() is called on a object of type
Car, the Car::Upgrade() function is invoked

Overriding (and Calling) Example

• Car class overrides and calls PrintSpecs()
void Car::PrintSpecs()

{

 Vehicle::PrintSpecs();

 // additional Car-only code

}

• can explicitly call a parent’s function by using
the scope resolution operator

Attempted Overloading Example

• Car class attempts to overload the function
Move(double distance) with new parameters
void Car::Move(double distance,

 double avgSpeed)

{

 // new overloaded Car-only code

}

• but this won’t work the way we expect!

Precedence

• overriding takes precedence over overloading
– instead of overloading the Move() function, the

compiler assumes we are trying to override it

• declaring Car::Move(2 parameters)

• overrides Vehicle::Move(1 parameter)

• we no longer have access to the original
Move() function from the Vehicle class

Overloading in Child Class

• must have both original and
overloaded functions in child class
void Car::Move(double distance);

void Car::Move(double distance,

 double avgSpeed);

• “original” one parameter function
can then explicitly call parent function

Homework 6

• check validity of input values

• acceptable does not mean guaranteed!

• be extra careful with following coding
standards, and making appropriate decisions

• any questions?

Project

• proposal due next week in class

• alphas due 1 ½ weeks after proposal

• please don’t turn in anything late!

• will grade last submission from group
members for alpha and project

