
CIS 1951

App Design and User
Experience
Lecture 11

Please sit with your project team!

Last time, in CIS 1951…
UIKit & UIKit Integration with SwiftUI

• UIKit basics: MVC

• User interaction in UIKit: event and input management

• Integrating UIKit in SwiftUI: using UIViewRepresentable

• Combining UIKit & SwiftUI: navigation and data sharing
strategies

• Questions? Comments? Feedback?

CIS 1951 as a whole

Lectures 1-6: The Basics

Lectures 7-10: Technologies

Lectures 11-13: Beyond Development

The App Design Process

How do we get an app from scratch?
What do we need to know?

• Problem: What problem do we want to solve?

• Solution/Features: How do we solve it?

• UI/UX: How will people access/use our solution?

• Implementation: How do we build our solution?

What is UI/UX?

• UI = User interface, aka what the user sees on our app

• UX = User experience, aka how the user interacts with our
app

Design Thinking

DSGN 2570, Tom McQuaid, University of Pennsylvania

The Planes of UX

From The Elements of User Experience by Jesse James Garrett

The UX Process

DSGN 2570, Tom McQuaid, University of Pennsylvania

The App Design Process
Steps

• User Stories

• Low-fi Sketch

• User Flow

• View Hierarchy Diagram

• High-fi Sketch

User Stories

User Stories
Definition

“Brief, informal explanations of software
features written from the perspective of the
end user”

https://www.atlassian.com/agile/project-management/user-stories

https://www.atlassian.com/agile/project-management/user-stories

User Stories
Structure

“As a [persona], I [want to], [so that].”

https://www.atlassian.com/agile/project-management/user-stories

https://www.atlassian.com/agile/project-management/user-stories

User Stories
Examples

• Consider our HW4 weather app:

• “As a frequent traveler, I want to quickly check the weather forecast for
multiple cities I plan to visit, so that I can pack appropriately and make
informed travel arrangements.”

• “As a gardening enthusiast, I want to monitor the weather conditions of
my local area and save historical weather data, so that I can plan my
gardening activities based on past weather trends and upcoming
forecasts.”

User Stories
Your Turn!

Generate 5 user stories for your project app.

User Stories
Your Turn!

Pick 1 to share!

Say your app idea, then your selected user story.

Low-fi Sketch

Low-fi Sketch
Definition

A rough drawing or skeleton of how your
app will look and work.

*Sometimes also called a “wireframe”

Low-fi Sketch
Example

https://www.visily.ai/blog/what-is-low-fidelity-wireframe/

https://www.visily.ai/blog/what-is-low-fidelity-wireframe/

Low-fi Sketch
Your Turn!

Use pencil and paper, sketch a wireframe of your app.
Which screens do you plan to have?

What’s on each screen?

Low-fi Sketch
Your Turn!

Pass your sketch to your neighbor.

Write down what you think your neighbor’s app does
based on the sketch you see.

What features can you see?

User Flow

User Flow
Definition

A visualized path that the user follows
through an app to complete single or
multiple tasks.

User Flow
Example

https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/

https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/

User Flow
Example

https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/

https://uxmisfit.com/2020/08/17/what-is-a-user-flow-everything-you-need-to-know/

User Flow
Your Turn!

On your low-fi sketch, draw at least 3 user interactions
using arrows across components.

View Hierarchy Diagram

View Hierarchy Diagram
Review from Week 4!

High-fi Sketch

High-fi Sketch
Definition

A realistic, interactive prototype that
closely resembles the final design of a
project.

*Sometimes also called a “high-fi wireframe” or “prototype”

High-fi Sketch
Example

https://codiant.com/blog/low-fidelity-vs-high-fidelity-prototypes/

https://codiant.com/blog/low-fidelity-vs-high-fidelity-prototypes/

High-fi Sketch
Tool: Figma

• Draw

• Prototype
interactions

• Simulate

• Access
community
assets/tools

UI/UX Design: Starter Tips

DSGN 2570, Tom McQuaid, University of Pennsylvania

1. Visibility of system status

Visibility of system status

Keep users informed about what’s going
on.

Visibility of system status

Visibility of system status

Visibility of system status

Visibility of system status

BAD

2. Match between system and the real world

Match between system and the real world

Speak the users’ language

Match between system and the real world

Match between system and the real world

Match between system and the real world

BAD

3. User control and freedom

User control and freedom

Make it easy to leave a flow or undo an
action

User control and freedom

User control and freedom

User control and freedom

User control and freedom

BAD

4. Consistency and standards

Consistency and standards

Jakob’s Law:  
Users spend the majority of their time using products other than
yours. They will expect your product to behave like all of those
other products.

Consistency and standards

Consistency and standards

Consistency and standards

Consistency and standards

BAD

5. Aesthetic and minimalist design

Aesthetic and minimalist design

Provide relevant information. Remove
clutter.

Aesthetic and minimalist design

Aesthetic and minimalist design

Aesthetic and minimalist design

BAD

Aesthetic and minimalist design

BAD

Read More…
If you have time, check this out:

Book: Refactoring UI

https://www.dropbox.com/s/
q1gmc3fftuhwxgq/Refactoring UI
v1.0.2.pdf?dl=0

Accessibility

DSGN 2570, Tom McQuaid, University of Pennsylvania

Why Accessibility?

• By making your product accessible, you are ensuring that
users with disabilities have a good user experience

• Many existing sites have accessibility barriers that make them
difficult or impossible for some people to use

Who Determines What’s Accessible?

• The World Wide Web Consortium (W3C) is an international
community that develops web standards

• Their Web ContentAccessibility Guidelines (WCAG) covers a
wide range of accessibility best practices: https://
www.w3.org/TR/WCAG20/

https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/

Groups to Consider for

Accessibility and Color

Don’t Use Color Alone to Convey Information

Huh?

Don’t Use Color Alone to Convey Information

Oh.

Don’t Use Color Alone to Convey Information

...but don’t take it too far, either

Color Contrast

• We determine whether there is enough visual contrast
between two colors in our UI using contrast ratios

• Contrast ratios can range from 1 to 21 (commonly written 1 : 1
or 21 : 1)

Sufficient contrast between text and background

• WCAG defines 4.5 : 1 as the minimum contrast ratio a piece of <24px text can
have. The minimum ratio for text >24px is 3 : 1.

Sufficient contrast between text and background

How do we determine a contrast ratio?

WebAIM online tool Figma Contrast Plugin

https://webaim.org/resources/contrastchecker/

This applies to image backgrounds as well

This applies to image backgrounds as well
Lighten and darken as necessary

Do this by overlaying a white or black rectangle of x% opacity :))

Mobile Typography

Mobile Typography

• 16px is a good base size to start with!

• Increase to 18-20px for long-form reading

• Decrease as low as 10px for tertiary elements

• Always test on your real device to get a feel for sizing!

Coding for Custom UI

Custom Button Style

1 Defining a Custom Button Style

struct MyCustomButtonStyle: ButtonStyle {
 func makeBody(configuration: Self.Configuration) -> some View {
 configuration.label
 .padding()
 .background(configuration.isPressed ? Color.gray : Color.blue)
 .foregroundColor(.white)
 .clipShape(RoundedRectangle(cornerRadius: 10))
 .scaleEffect(configuration.isPressed ? 0.95 : 1.0)
 }
}

2 Using a Custom Button Style

struct ContentView: View {
 var body: some View {
 Button("Press Me") {
 print("Button pressed!")
 }
 .buttonStyle(MyCustomButtonStyle())
 }
}

Custom View Modifier

1 Defining a Custom View Modifier

struct MyCustomModifier: ViewModifier {
 var backgroundColor: Color = .green

 func body(content: Content) -> some View {
 content
 .padding()
 .background(backgroundColor)
 .clipShape(Circle())
 .shadow(radius: 10)
 }
}

2 Wrapping a Custom View Modifier

extension View {
 func myCustomStyle(backgroundColor: Color = .green) -> some View {
 self.modifier(MyCustomModifier(backgroundColor: backgroundColor))
 }
}

3 Using a Custom View Modifier

struct ContentView: View {
 var body: some View {
 Text("Hello, World!")
 .myCustomStyle(backgroundColor: .blue)
 }
}

More…

• App Icon

• App Launch Animation

• Custom Color Set

• Compatibility for multiple OS versions/platforms

Thank You!

