Data Persistence

Lecture 9

CIS 1951

Last time, in CIS 1951...

Networking in iOS

« HTTP requests and response handling (async/await)
 URLSession for network tasks

* Parsing JSON data, Encodable & Decodable

* Error handling and network best practices

e Questions? Comments? Feedback?

CIS 1951 as a whole

Lectures 1-6: I he Basics

Lectures 7-10: Technologies

* Sensors
» Networking

« Data Persistence

Lectures 11-13: Beyond Development

What is Data Persistence?

Data Persistence
Storing and Managing Data in 10S

* Definition: The ability to save data to a permanent storage location, so it can
later be retrieved and used

 Importance:
 Enhances user experience by saving user settings, preferences, and state
* Allows for offline access to data

 Essential for data-intensive applications

Data Persistence
Storing and Managing Data in 10S

TLDR: We want to be able to
REMEMBER stuff

Data Persistence
Storing and Managing Data in 10S

* Options:
e UserDefaults
» Core Data
o SwiftData
* File Management

» 3rd Party Libraries (Keychain, etc.)

UserDefaults

UserDefaults
Simple, lightweight storage

* Used to store lightweight user preferences and settings

 |deal for saving simple configurations (e.g. volume level,
display mode)

* Not intended for sensitive or large quantities of data

UserDefaults
Simple, lightweight storage

 How large is “too large™?
 |deally <1 MB

* Designed for small pieces of data like booleans, integers,
strings, or small arrays and dictionaries

1 Using UserDefaults

@AppStorage("key") var varName: Type = defaultValue

2 Saving Preferences with UserDefaults

struct FirstView: View {
@AppStorage("username") var username: String = ""

var body: some View A
// Username is automatically saved
TextField("Enter your username", text: $username)
. padding()

3 Retrieving Preferences with UserDefaults

struct SecondView: View {
// Retrieve the username from UserDefaults
// or use a default value
@AppStorage('username') var username: String = "DefaultUser"

var body: some View {
Text("Welcome back, \(username)!")
. padding()

UserDefaults

Best Practices and Limitations

* Ensure default values are set for a better user experience
* Designed for simple data types and small datasets
 Use more secure storage methods for sensitive information

 May lead to clutter and misuse If overused for complex data

Core Data

Core Data

Complex, structured data

* Apple’s native framework for object graph and persistence

* Suitable for complex data models with relationships and
extensive data.

* Used in apps requiring data persistence beyond simple
preferences

Core Data

Understanding the Pieces

Core Data Stack

AN (O W
e SO W e P
orsistent store
@5er."h__ S Nl S S e e e (R e
)

i
.‘ ""

@k@i@‘fUﬁ@@i@l

~

Core Data: Set Up

Step 1: Create the Data Model

Ba | € ContentView.swift & Model.xcdatamodel (G Assets.xcassets

& Scratch) Scratch) & Model.xcdatamodeld } & Model.xcdatamodel) B User

* Xcode > New File '
> Data MOdel | Undefined

B User

* Define your entities
(.e. objects) and
attributes (i.e.
properties)

Core Data: Set Up

Step 2: Initialize the Core Data Stack

import CoreData

struct PersistenceController {
static let shared = PersistenceController()

let container: NSPersistentContailner

init() {
container = NSPersistentContainer(name: "User")
container. loadPersistentStores {1 (storeDescription, error) 1in
if let error = error as NSError? {
// Error handling...
}

Core Data: Set Up

Step 3: Get the Managed Object Context

@mailn
struct MyApp: App {
let persistenceController = PersistenceController.shared

var body: some Scene {
WindowGroup <{
ContentView()
.environment(\.managedObjectContext,
persistenceController.container.viewContext)

h
}

CRUD Operations

What are they?

* Create: Adding new records to your database
* Read: Fetching existing data
* Update: Modifying existing data

* Delete: Removing data

CRUD Operations with Core Data
CREATE

// Create
let newUser = User(context: managedObjectContext)
newUser.name = "John Doe"

CRUD Operations with Core Data
READ

// Read

// Traditional way — full control, manual management

let fetchRequest = NSFetchRequest<User>(entityName: "User'")
let users = try? managedObjectContext.fetch(fetchRequest)

CRUD Operations with Core Data
READ

// Read

// SwiftUI way — Less control to fetch request details, but seamless integration
struct UserListView: View {
@FetchRequest (
entity: User.entity(),

sortDescriptors: [NSSortDescriptor(keyPath: \User.name, ascending: true)]
) var users: FetchedResults<User>

var body: some View {
List(users, id: \.self) { user in
Text(user.name ?? "Unknown")
s

CRUD Operations with Core Data

UPDATE

// Update

1f let firstUser = users.first {
firstUser.name = "Jane Doe"

}

CRUD Operations with Core Data
DELETE

// Delete

1f let firstUser = users.first {
managedObjectContext.delete(firstUser)

s

CRUD Operations with Core Data
SAVE - Write to DB!

// Save Changes
try? managedObjectContext.save()

SwiftData

SwiftData vs. Core Data
Which one do | pick?

Feature SwiftData Core Data

Age Newer Older

API More modern and Swift-friendly More complex and Objective-C-oriented
Efficiency More efficient Less efficient

Integration with SwiftUI Seamless Not as seamless

Features Fewer features More features

Maturity Less mature More mature

1 Declaring a Model

import SwiftData

@Model

class Recipe {
@Attribute(.unique) var name: String
var summary: String?
var ingredients: [Ingredient]

2 Querying Data in SwiftUI

@Query var recipes: [Recipe]

var body: some View 1
List(recipes) { recipe in
NavigationLink(recipe.name, destination:
RecipeView(recipe))

h
h

SwiftData

Best Practices and Limitations

* VVery new framework - watch for updates & potential bugs in
edge cases

* Not as feature-rich or complex as Core Data for managing
relationships between data

File Management

File Management

Direct file system access

* Directly reading from and writing to the file system

* Used when storing large documents or binary data that don't

fit Into structured databases, non-standard file formats or
external files

* Essential for apps that handle media, documents, or require
offline content access

1 Writing to a File

func saveTextToFile(text: String, fileName: String) {

let paths = FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask)

let fileURL = paths[@].appendingPathComponent(fileName)

do {

try text.write(to: fileURL, atomically: true, encoding: .utf8)
} catch {

// Handle the error

print("Error saving file: \(error)")

2 Reading from a File

func readTextFromFile(fileName: String) —> String? {

let paths = FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask)

let fileURL = paths[@].appendingPathComponent(fileName)

do {

let text = try String(contentsOf: fileURL, encoding: .utf8)
return text

} catch {
// Handle the error

print("Error reading file: \(error)")
return nil

File Management

Best Practices and Limitations

* Organize files into appropriate directories

 Handle errors and data integrity during read/write operations
 Regularly back up important data and manage storage usage
 Manual management means higher complexity

* Potential security risks if sensitive data is not properly encrypted

Keychain

Keychain

Secure and sensitive data

» Secure storage for...

* Sensitive information (e.g. passwords, tokens, and
encryption keys)

* Personal data that must be kept secure

* Protects data even if the device iIs compromised

1 Saving to Keychain

import KeychainSwift

func saveToKeychain(key: String, value: String) {
let keychain = KeychainSwift()
keychain.set(value, forKey: key)

2 Reading from Keychain

import KeychainSwift

func readFromKeychain(key: String) —> String? {
let keychain = KeychainSwift()
return keychain.get(key)

Keychain

Best Practices and Limitations

* Use for small pieces of sensitive data, not large datasets

* Always check for the success or failure of Keychain
operations

* Retrieval and storage processes can be slower due to
encryption and decryption processes

Coding time!

https://github.com/cis1951/lec9-code

